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Abstract— The application of sound mathematical modeling 

and simulation techniques to support command and control of 

time and mission critical operations has been an active area of 

C4I research. This is especially true for C2 operations in the 

presence of adversarial players, where inadequate responses, as 

well as the lack or delay of appropriate responses, might have 

drastic consequences with loss of life. One typical example of 

such high-stake operations is Air Defense and their associated C2 

Systems. This work focuses on the application of a specific 

combination of mathematical modeling and simulation 

techniques to support C2 operations. More specifically, we apply 

a combination of Bayesian networks and Petri nets to perform 

discrete event computer simulations in the analysis of a time and 

mission critical C2 system. We illustrate our findings by applying 

this combination of techniques to an air defense system that must 

generate responses to potential airborne threats. The threats are 

posed by initially unidentified objects acquired by the system 

sensors, going through three levels of track acquisition: detection, 

classification, and identification. In face of any given track, the 

system is supposed to generate a proper response, which in some 

cases must have to be cleared by competent authorities. In a 

more tangible manner, through the proposed methodology, it is 

possible to determine the sensor configuration (mostly radars), 

which allows for addressing these threats on a timely fashion. 

Keywords—air defense system; colored petri nets; networks; 

threat assessment; systems engineering 

I. INTRODUCTION 

The process of properly addressing airborne threats poses a 
challenge to military modelers worldwide. Most computer-
based simulation tools currently available rely on deterministic 
techniques to model C2 operations, mostly due to their 
adequate performance in supporting time and mission critical 
operations. Unfortunately, deterministic methods are not 
adequate for highly dynamic changing scenarios in the 
presence of adversarial, hard-to-predict behaviors. These 
methods involve supplied pre-programmed artificial 
intelligence capable of capturing the important aspects related 
to motion and combat decisions on a tactical level, but are less 
suitable for capturing the inherently probabilistic nature of 
adversarial C2 operations (a.k.a. the fog of war). In addition, 
the complex interactions between various military echelons and 
their associated decision-making processes are also more 
suitable for probabilistic modeling techniques. 

The command and control in air defense systems properly 
illustrates the above issues, as it involves both a highly 
complex level of interactions between blue forces and the need 
to properly react against adversarial players. Our research aims 
at applying both deterministic and probabilistic approaches to 
address these complex C2 environments. In this paper, we 
provide an initial step in demonstrating the feasibility of our 
ideas with a simulation experiment within a typical C2 
scenario. The scenario involves an air defense system that must 
provide military pilots and analysts with a planning framework 
capable of analyzing the planned mission paths to determine 
mission survivability and success metrics.  

For a scenario to be representative of the inherent 
complexity of these operations, it must contain realistic models 
of air defense systems characterizing the physical aspects of 
aircraft operation in detail, the dynamics of air operations as 
the scenario unfolds, as well as the uncertainty involved in the 
interactions between adversaries in an airspace theater of 
operations. Our approach employs Colored Petri Nets (CPNs) 
to achieve the first two aspects and Bayesian Networks (BNs) 
to obtain the latter. 

With this approach, we aim to evaluate whether a given air 
defense system generates responses efficiently. If it does not, 
this would indicate that i) the information is not being acquired 
in time; ii) information is not being properly processed; or iii) 
the authorizations are taking too long to be given. We assess 
the first using the concept of radar layers, which is related to 
the number of radars allocated around a protected area. The 
area’s geometry is the basis for defining the possible lines of 
detection of incoming threats. The other two  potential causes 
of failure are quantified using probabilities within the CPN 
model itself. 

We illustrate the multi-disciplinary approach mentioned 
above with a proof of concept prototype that implements some 
of our ideas in an air defense C2 planning example. The overall 
approach is laid out in this paper as follows. After the 
introduction above, Section II presents the main concepts under 
our application of BNs and Petri Nets, together with a partial 
but representative account of the related efforts in this area. In 
Section III we describe the underlying model as implemented 
in the prototype we built to run our experiments, which are 
then explained and discussed in Section IV. Finally, we bring 
our conclusions in Section V.  



II. BACKGROUND AND RELATED WORK 

BNs are a probabilistic representation technique in which a 
Joint Probability Distribution (JPD) is represented as a Direct 
Acyclic Graph (DAG). Nodes in the DAG represent random 
variables of a probabilistic model and its edges represent the 
probabilistic relationships among these variables. Conditional 
Probability Distributions (CPDs) represent the strength of these 
relationships. Although the technique can be traced back to the 
work of reverend Thomas Bayes more than 2 centuries ago, its 
applicability only became possible with the advent of 
computers and the work of various researchers in the late 
eighties, most predominantly Judea Pearl ([1], [2], [3]). BNs 
are applied in many domains of applications, mostly as a 
probabilistic expert systems approach. Within the C2 domain 
we focused in the present work, a proposed method to increase 
the verisimilitude of the models was to include Bayesian 
reasoning on the response generation process within the 
simulation, as seen in [4]. An air defense system is modeled on 
a physics-grounded simulation environment in a way that 
multiple simulation runs can define areas of higher 
vulnerability, as well as assess whether a mission has 
satisfactory chances of success. BNs are used to extract and 
refine knowledge from this simulation. 

However, to simulate air operations in a realistic way, it is 
not only necessary to realistically replicate entity behaviors and 
decision-making processes to generate actions, but also to 
accurately model their processing times. The latter define the 
necessary conditions that must be met before executing each 
phase within the response generation process. One potential 
approach for achieving this would be dynamic Bayesian 
networks (DBNs), which extend BNs to capture probabilistic 
relationships as they evolve in time ([5], [6]). In our initial 
work, we considered the use of DBNs, and actually did some 
initial attempts to produce DBN models, but, given the 
modeling goals and performance requirements we had for this 
aspect of the modeling process, we opted for using a different 
technique, stochastic Petri nets. 

Petri nets are a modeling language for describing discrete 
event systems. They are defined as directed bipartite graphs, in 
which the nodes represent places and transitions linked by 
directed arcs. Arcs are responsible for describing which places 
are pre- and/or post- conditions for which transitions [7].  

Petri nets may include graphical markings on its places to 
enable the transitions of which they are pre-conditions. We 
explored this feature by using tokens forming the markings in 
the Petri net to represent incoming objects, which are possible 
threats to an existing air defense system. Also, when the 
transitions occur, time attributes are assigned to these tokens 
based on several probabilistic distributions, adding the desired 
variability to the system. Petri nets that contain time attributes 
are called timed Petri nets [8] and impose more restrictions to 
the firing of specified transitions. For the transition to occur, 
the simulation time must meet the token time, which can be 
increased throughout the simulation. Tokens may have data 
values attached to them, which are called colors. Petri nets that 
contain places that support tokens of a specific type (data 
values) are called Colored Petri Nets and these types are 
defined as color sets. 

The tokens are spawned through a random object generator 
and are all considered to be able to be further identified in the 
model, i.e. all created entities within the model are detectable 
objects. Moreover, all objects are airborne, being detected by 
radars. After the detection phase, the system moves to the next 
two levels of acquisition: classification and identification. 
Classification is the process of determining the object’s class, 
as specified in Section III, whereas identification relates to the 
definition of the object’s stance. These levels of acquisition are 
commonly used in this field, as observed in ([9],  [10],  [11]). 
With the full knowledge of the potential threats characteristics, 
the response generation process goes through a Bayesian threat 
assessment and a probabilistic clearance obtainment. Lastly, 
the data is output for analysis as specified in Section IV. 

This system is intended not only to properly model a 
general air defense system, but also to identify its 
vulnerabilities as well as to propose and evaluate suitable 
alternatives. More specifically, the main goal is to determine 
how many radar layers are necessary to define a warning line 
capable of detecting incoming threats in a timely fashion. 

The model was implemented on the software CPN Tools, 
which is a tool for editing, simulating and analyzing Colored 
Petri Nets (CPN) [12]. This tool from the University of Aarhus 
is based on advanced, post-WIMP (windows, icons, menus, 
pointer) interaction techniques, including bi-manual 
interaction, tool glasses and marking menus to make the 
modeling process faster and more intuitive [13]. Also, it allows 
for coding on SML (Standard ML) as a means to control the 
data flow in a more complex fashion, mimicking complicated 
processes from the reality. 

A CPN model for an air defense system was also proposed 
in [14], however, without probabilities, which are one of the 
main contributions of this paper. They advocate that CPN are a 
suitable approach to model command and control systems, 
allowing for rapid prototyping, gaming, and simulation. 
Following up into that, we increased the complexity of their 
model, mainly on the acquisition and decision processes, 
focusing on the determination of the number of radars layers. 

III. AIR DEFENSE SYSTEM MODEL 

The system consists of four major phases: Acquisition, 
Response Generation, Approval, and Analysis. Some of them 
contain several sub-phases, which are described in the 
following sub-sections and presented in Fig. 1. 

A. Acquisition 

This phase consists of detecting, classifying, and 
identifying flying objects that enter the airspace controlled by 
the air defense system. A key assumption is that the arrival of 
random objects follows a Poisson distribution, and therefore 
the interarrival times can be represented by an exponentially 
distributed random variable. A process following such 
characteristics is called a Markovian process, and possesses the 
property of being memoryless. This is a very desirable feature 
for modeling aircraft arrivals, since it makes the models much 
more efficient, and its use in a wide range models ([15], [16], 
[17]) comes as no surprise. 

 



 
Fig. 1. Air Defense System Model 

Besides the random interarrival times, the flying objects 
themselves are generated randomly. That is, their two basic 
characteristics, CLASS and STANCE, are assigned in a 
random and independent fashion. In our simulated system, the 
determination of these two characteristics is the primary goal 
of the acquisition phase. Of course, since it is a simulation, the 
analyst knows the actual value (i.e., the “ground truth”) and 
can therefore compare what the system assesses in its 
acquisition phase against the ground truth. These 
characteristics are defined as follows: 

1) CLASS: indicates the type of object that is entering the 

area under the air defense system’s responsibility. 

a) Combat Plane: a military airplane with the primary 

role of destroying enemy equipment, either in air combat or in 

bombing missions. This class includes fighters, bombers, as 

well as attack and electronic warfare aircraft. 

b) Non-combat Plane: aircraft used in a supporting 

capacity for the military, covering a variety of functions 

including cargo transport, aerial refueling, search and rescue, 

evacuation, information-gathering, among many other roles. 

Although not designed for combat, non-combat aircraft may 

be equipped with weapons for self-defense when navigating 

through hostile areas or battlefields. 

c) Helicopter: a type of aircraft that uses its blades, 

which are also called spinning wings, to fly. In our scenario, 

the main roles for helicopters are transport and attack. 

d) Drone (Unmanned Air Vehicle - UAV): a small 

aircraft that can be either remotely controlled or autonomous. 

These aircraft can be used as surveillance systems, data 

collectors, cargo transporters, etc. Nowadays, they are also 

used in combat to attack ground targets. 

e) Bird: a vertebrate animal that possesses feathers and 

wings and can fly. Bird is not a direct threat, but is considered 

in the Petri net system for evaluation purposes. 

2) STANCE: indicates whether the incoming object is 

friend or foe. 

a) Friendly: flying object considered as ally and 

potentially not a threat 

b) Neutral: flying object considered as a potential threat  

c) Opposing: flying object that pertains to a hostile 

group or nation, therefore considered as a threat  

These two characteristics are displayed on a color set called 
UFO (unidentified flying object), that also contains the object’s 
arrival time recorded through the function ATR (arrival time 
recorder). Color sets are specifications of the types of tokens 
that can reside on a particular place. In this case, the token 
possesses the two characteristics within it. 

In our simulated environment, detectable flying objects are 
generated at the edge of the air defense system’s detection 
range. That is, the moment the random generation of these 
objects occurs represents the time at which a detectable flying 
object goes within the air defense system’s radar range. After 
its generation, it is just a matter of time for a given object to be 
detected. Based on the knowledge of subject matter experts 
(SME), the average time of 60 seconds was adopted as the 
average duration of the detection process, no matter what class 
of object. 

Initially, all the average service times were modeled as 
exponential processes, following an M/M/1 queuing model. 
However, the second model adopted Erlang service times, with 
different parameters depending on the characteristics of the 
processes as discussed on Section IV. After going through the 
detection process a token is generated on the Detected Object 
place, representing that the system recognizes the existence of 
an object within range, not yet knowing its characteristics. 

Following on with the levels of acquisition presented 
earlier in this paper, the classification phase includes an extra 
layer of complexity when compared to the detection phase, 
since it adds a probability assessment representing the ability to 
classify a detection without further investigation. This 
probability was arbitrarily set to 90%, stating that the clear 
majority of the objects can be classified by radar operators and 
analysts, and do not require a more detailed visual 
classification or the use of more sophisticated systems for 
disambiguation. 

When classification was not achieved, the system includes 
an extra transition that leads to a time penalty on the overall 
process, representing a harder and more time-consuming 
classification process. During the evaluation of our results, we 
performed sensitivity analysis by modifying the classification 
probability and assessing its influence on the average 
processing time. 

Following the above flow, depending on the sophistication 
of the classification methods, the system will be subjected to a 
penalty proportional to its performance. The Classify transition 
contains a service time modeled similarly to the Detect 
transition, i.e., exponential at the beginning and Erlang on a 
further analysis, only adding an extra amount of time to the 
total processing time. 

A token generated on the Object Classified place means 
that the CLASS of the object is finally known to the system. 
The next level of acquisition requires it to be identified so that 
an appropriate response can be generated. This is performed at 
another transition node called Identify, which again contains 
only a service time to be added to the object’s processing time. 
However, to account for the fact that this process should be 
briefer when a friendly object is being identified, the definition 
of the extra time is conditioned to the object’s STANCE. 



Fig. 2. Bayesian network for threat assessment. 

B. Response Generation 

Having the UFO as an Identified Object, the air defense 
system operators move to the next stage of the model, knowing 
both the CLASS and the STANCE of the incoming object. 
These characteristics are input to the Threat Assessment (TA) 
place, which contains Bayesian model probabilities of response 
for each of the possible combinations of these properties. 

These probabilities are generated a priori by the Bayesian 
network displayed in Figure 2 and are stored in functions 
within the Petri net. Based on these probabilities for a 
particular object the response is picked and stored on the 
Response place, which has a color set called UFOR, indicating 
that it also contains the assigned response. 

The BN depicted in Figure 2 follows the modeling 
approach proposed in [17], in which the variables present in an 
air defense scenario would be partitioned into proximity 
parameters, capability parameters, and intent parameters. 
Proximity parameters are those related to the distance between 
the aircraft executing the mission and its target (i.e. the 
defended asset, from the perspective of the model). In this case, 
the proximity parameter is the Distance node. Capability 
parameters are related to the ability of the enemy’s air defense 
system to inflict damage to the defended asset, represented the 
BN nodes Range, Target, Time, and Speed. Finally, Intent 
parameters refer to the enemy’s intentions towards the 
defended asset and are encompassed in the node Intent. In 
addition to the parameter nodes, the model includes the nodes 
Within, Capability, and Threat, which represent the results of 
the interactions between the parameter nodes. These 
interactions should represent some of the observed 
characteristics of the real system.  

This Bayesian Network was created on UnBBayes, an 
open-source, Java-based, probabilistic graphical framework 
developed by the Artificial Intelligence Group (GIA) from the 
Computer Science Department at the Universidade de Brasília 
[18]. UnBBayes has a GUI and an API that provides support to 
various algorithms and techniques via a plugin-based 

architecture. This includes, but is not limited to, Bayesian 
inference, sampling, learning and evaluation, which yields 
some advantages compared to the other available software 
[19]. 

C. Approval 

Following a similar pattern as in the classification process, 
the Ask for Clearance transition indicates the probability of a 
commander to ratify the selected response, giving the 
necessary clearance for the operations to occur. Again, this 
probability is arbitrarily set to 90%, indicating that the 
commander has a high propensity to accept the recommended 
action by the system. In the case the commander disagrees with 
the system’s output, there is a reselection node, which 
replicates the Threat Assessment transition and leads to a new 
clearance requisition. 

D. Analysis 

Finally, the analysis stage simply calculates the processing 
time for a giving object and records it on a new color set called 
UFORT. The calculation is simply made by subtracting the 
recorded arrival time from the current token time. From the 
Analysis node, the data is extracted for further investigation on 
the software Excel [20]. 

IV. METHODOLOGY 

For each simulation run, a limit of 1000 incoming objects 
was set for providing probabilistically significant results. 
Moreover, each scenario was simulated three times and the 
average was utilized for the purposes of comparison. It is 
important to note that, even though three runs may seem a 
small number of runs, the statistical significance comes from 
the fact that 1000 objects in each run is a number much larger 
than real scenarios would present. The analysis process was 
designed based on the goals laid out in Section I. Starting from 
the base model, modifications have been made to reduce the 
number of radar layers needed and to minimize the number of 
processing delays and leakers, being represented by the 
following metrics: 



1) Number of radar layers: total of radars used to define 

the number of range (radii) that the incoming object has to go 

through until reaching the target. The number of radii is 

defined by inputting the number of radar layers on the 

expression 2n-1, meaning that a radar on a central position 

only accounts for a single radius, whereas the others account 

for two, i.e., a diameter. This means that the radars are 

assumed to be tangent with each other and that they cover all 

directions from the central spot (position of the first radar, or 

first layer). 

2) Average processing time: average time that each object 

takes to be processed by the air defense system, considering 

all possible classes. 

3) Average processing delay per object class: average 

time that each object, from a given class, exceeds the 

processing time limit established by the number of radar 

layers and its ground speed. Each aircraft class has a particular 

average speed that determines a time in which the distance 

defined by the number of radar layers will be traveled. 

4) Number of leakers: count of objects that are processed 

on a time that exceeds the time limit established by the 

number of radar layers, i.e., objects that present processing 

delay. 

This metrics are obtained from each of the following 
models: 

A. Base Model 

This is the exact model described in Section III, with no 
modifications. However, due to an elevated number of needed 
radar layers observed with this model, modifications were 
proposed and implemented in the following models. 

Before considering the potential possibilities for reducing 
the number of the required radars, we decided to implement a 
design modification for modeling service times. This involved 
adopting an Erlang model, which we belief would reflect the 
actual operation of the system in a more realistic way. 

B. Erlang Model 

Some of the processes stated on the base model consist of a 
collection of sub-processes that would have to be modeled on a 
more complex way, resulting on a considerable increase on the 
number of places and transitions present on the Petri Net.  

Since this increased complexity would depart from the 
scope of this research, which is to provide a high-level model 
for the analysis of processing times and leakers, the employed 
solution was to substitute the exponential service times to 
Erlang distributions. In this way, when varying the parameter k 
of the probability distribution, the model made it possible to 
represent an estimate of the number of sub-processes within 
each transition node.  

C. Bypass Model 

This alternative model was conceived by focusing on the 
most critical object on the base model: combat plane. This 
class of objects was clearly identified as a bottleneck, since the 
number of radars would go down to 2 if only the other three 
objects were analyzed. 

To reduce the processing time of combat planes, so that it 
stays within the limits established by the plane’s average 
speed, a bypass arc was created connecting the classification 
transition directly to the response place. The meaning of this 
modification in practical terms is that, as soon as an object is 
classified as a combat plane, an interceptor aircraft is activated 
and sent for further identification and possible response. The 
approval process is still maintained mostly for representing the 
case in which a friendly aircraft is inbound. 

V. RESULTS AND DISCUSSION 

A. Base Model 

After three simulation runs of the model described on 
Section III with no modifications, it was observed that the 
minimum number of radar layers for avoiding object 
processing delays on any given class was four layers. 

B. Erlang Model Results 

The results obtained from running this modification three 
times were similar to the ones from the base model, being 
quantitatively compared on subsection C of this section 
(Bypass). Qualitatively, the addition of sub-processes allowed 
for a greater variability on individual processing times. This is 
translated numerically to an increase from 215 to 236 on the 
number of leakers. 

With the new Erlang base model at hand, some 
modifications were made to evaluate the classification process, 
as well as how the complacency of the clearance obtainment 
would affect the processing time, and, consequently, the 
number of leakers and radar layers.  

 
Fig. 3. Clearance and Classification influence on the Average Processing 

Time (in minutes). 

 
Fig. 4. Clearance and Classification influence on the Number of Leaks. 



 
Fig. 5. Clearance and Classification influence on the Average Combat Plane 

Delay (in seconds). 

As presented in Figures 3, 4, and 5, the higher probabilities 
for either the ability to classify or the clearance complacency 
yielded better results. This is due to the fact that the tokens will 
be held for a shorter period of time in these two nodes, and 
represents better sensors and a faster decision cycle. When 
analyzed as a whole – as in Table I – the average percentage 
variation of each modification of the probabilities was 4.91%. 
This number resulted from 4.95% for changes on the 
classification process and 4.87% for changes on the clearance 
process. As an insight on the meaning of these results, if one 
varies the probability to classify by 5%, any of the metrics’ 
values should vary inversely by an average of 4.91%, for the 
analyzed range. 

As an interesting fact, when each metric is analyzed 
individually it is possible to conclude that variations on the 
number of leakers are more evident when the clearance process 
is modified (Table II). On the other hand, the classification 
process showed a stronger influence on the average combat 
plane processing delay (Table III). Finally, the average 
processing time was affected very similarly by both the 
variations (Table IV). 

TABLE I.  TOTAL AVERAGE PERCENTAGE VARIATIONS  

 Classification Clearance 

Total 4.95% 4.87% 

Increase 4.41% 4.26% 

Decrease 5.50% 5.48% 

TABLE II.  NUMBER OF LEAKERS PERCENTAGE VARIATIONS 

 Classification Clearance 

Total 1.86% 4.05% 

Increase 2.45% 4.13% 

Decrease 1.27% 3.97% 

TABLE III.  COMBAT PLANE DELAY PERCENTAGE VARIATIONS 

 Classification Clearance 

Total 9.48% 7.97% 

Increase 7.78% 4.88% 

Decrease 11.17% 11.06% 

TABLE IV.  AVERAGE PROCESSING TIME PERCENTAGE VARIATIONS 

 Classification Clearance 

Total 3.52% 2.60% 

Increase 2.99% 3.79% 

Decrease 4.06% 1.42% 

In spite of the significant results on the reduction of the 
processing times and number of leakers, the required number 
of radars for eliminating average delays was at most reduced to 
3 on the best scenarios. This can be seen as a clear indication 
that a different approach for reducing this number is needed. 
We opted for implementing a few structural modifications to 
the analysis, since 95% was already a very high probability. 
Those modifications resulted in the bypass model explained 
below. 

C. Bypass Model Results 

Even though all the other object classifications lead to the 
same processes stated on the base model, the results lead to 
much lower metrics as showed in Figures 6, 7, and 8, being a 
very successful alternative to the base model. 

 
Fig. 6. Average Processing Time (in minutes) for Base (B), Erlang (B E), 

and Bypass (BP E) models. 

 

 
Fig. 7. Average Processing Delay (in seconds) for Base (B), Erlang (B E), 

and Bypass (BP E) models. Negative numbers indicate the processing delay, 
while positive indicate how many seconds in advance the threats were 

processed. 



 
Fig. 8. Number of Leaks for Base (B), Erlang (B E), and Bypass (BP E) 

models. 

VI. CONCLUSION AND FUTURE WORK 

This paper introduced our preliminary research on adopting 
a multi-disciplinary approach for evaluating time and mission 
critical C2 systems in the presence of adversarial behavior in 
an air defense system. While the vast majority of such systems 
employ a deterministic, rule-based approach, the prototype 
developed for this initial research employs a combination of 
Bayesian networks and Petri-Nets that leverages the main 
qualities of both deterministic and probabilistic representations 
to achieve an effective tool to model and evaluate complex 
systems.  

In our experiments, we performed sensitivity analysis and 
other evaluation techniques to test the boundary conditions of 
our models and assess the impact of the various parameters, 
with the goal of determining potential approaches for reducing 
the cost and improving the efficiency of the system. We also 
were able to learn how to control the data flow by embedding 
standard ML codes into the system, as well as by using 
characteristics and properties of the Petri-nets. Finally, the 
model was designed in a way that allowed us to leverage 
features provided in the CPN tools software, such as the ability 
to fine-tune simulation and hierarchy tools to enhance the 
system’s fidelity. 

The results obtained so far, although preliminary, suggest 
that the combination of these approaches can produce models 
of the stochastic relationships and model dynamics with 
enough fidelity to allow for sophisticated analysis not 
previously warranted in current approaches. We intend to 
further explore these possibilities by extending the current 
models to include a physics-sound simulation to provide 
ground truth values to the current prototype (i.e instead of our 
SME-based average parameters). This would increase the 
ability to replicate unexpected behaviors and other aspects that 
are difficult to envision in the current setup. 
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