
Cover Page

Revised Draft for Review Only 
(last edit: 20 September 2017)

Title: Link-Autonomy and Autonomics for Resilient Cross-Layer Communications Services

Primary Topic: Interoperability/Integration and Security
Alternate: Methodological Development, Experimentation, Analysis, Assessment and Metrics

Authors: Jayson Durham, SSC Pacific, San Diego, CA 92152-5001
Joan Kaina, SSC Pacific, San Diego, CA 92152-5001
Jason Landsborough, SSC Pacific, San Diego, CA 92152-5001
Minh Vuong, SSC Pacific, San Diego, CA 92152-5001
Zeeshan Barkatullah, SSC Pacific, San Diego, CA 92152-5001
Ryan Gabrys, SSC Pacific, San Diego, CA 92152-5001

Point of Contact: Jayson Durham, SSC Pacific, Code 56150, San Diego, CA 92040
(email) jayson.durham@navy.mil; (office) 619-553-2344; (cell) 619-971-9619

Keywords: Network Integration and Interoperability (Network I&I); Model-Based Systems 
Engineering (MBSE); System of Systems Engineering (SOSE); Autonomic Computing



Link-Autonomy and Autonomics
for

Resilient Cross-Layer Communications Services

Jayson Durham, Joan Kaina, Jason Landsborough, Minh Vuong, Zeeshan Barkatullah, Ryan Gabrys
SSC Pacific, San Diego, CA 92152-5001

Point of Contact: Jayson Durham, SSC Pacific, Code 56150, San Diego, CA 92040
(email) jayson.durham@navy.mil; (office) 619-553-2344; (cell) 619-971-9619

Keywords: Network Integration and Interoperability (Network I&I); Model-Based Systems 
Engineering (MBSE); System of Systems Engineering (SOSE); Autonomic Computing

Abstract: For supporting distributed network-centric operations, the development of a cloud-based 
experimentation framework has continued to be explored and further developed. The overall objective 
of the experimentation framework focuses on developing reliable, robust, and resilient tactical 
Intelligence, Surveillance, and Reconnaissance (ISR) communications and networking support 
capabilities that can be trusted to operate within a variety of adverse conditions. Thus, a cloud-
computing oriented experimentation framework is being further explored and developed for supporting 
ongoing model-based system-of-systems engineering (MBSE/SOSE) experimentation capabilities.

Current work focuses on the utilization of autonomic computing frameworks (e.g. Rainbow) for 
developing and assessing a variety of strategies (i.e. probes, effectors, decision logic) that enable 
wireless line-of-sight (LOS) data-links to adapt to adverse conditions that may impact the ability to 
meet information exchange requirements for respective net-centric distributed operations.

Within the context of autonomic computing technologies and respective adaptation strategies, the work 
discussed in this paper concurrently addresses the need for extending and augmenting such adaptation 
services to include model-based integration of emerging standardized architectures/frameworks, open 
source resources, and their respective source-level build capabilities. For example, the work described 
herein focuses on how a growing assortment of commercial-off-the-shelf and government-off-the shelf 
(COTS/GOTS) resources, which includes the Rainbow framework, can support self-adaptive cross-
layer cross-platform content delivery/distribution networking (CDN) and respective endpoint-
management requirements within the context of emerging data-modeling and enterprise-computing 
standards. Throughout the paper, footnotes are included to assist readers with more specialized and 
domain-specific topics.a

a Note to the reader: Technical references are enclosed in square brackets and listed at the end of the paper. Additionally, 
superscripted endnotes are provided to help facilitate an introductory understanding of concepts and topics that may be 
more common in one technology domain but otherwise not familiar or as applicable to the population at large. For 
accessing links and enlarging graphics as desired or needed, viewing a soft-copy on a large screen is recommended.



1. Introduction and Executive Summary

1.1 High-Level Introduction and Overview

As has been highlighted for a government-wide inter-agency initiative, called the Information Sharing 
Environment (ISE), there is an ongoing cross-cutting objective to "provide the right information to the 
right stakeholder at the right place and time" [1].1 Such information-sharing capabilities are especially 
critical for Information Dominance and Network Centric Warfare (ID/NCW).2 

Much progress has been made towards an evolutionary transformation to an operational information 
technology infrastructure (ITI) framework that addresses emerging concerns while supporting ID/NCW
capabilities.  Within this context of maturing ITI framework capabilities, there are a growing number of
challenges that include both the need for addressing functional requirements for improved functional 
capabilities, while also addressing the non-functional requirements (e.g. "-ilities") that help to further 
improve both systems-engineering and enterprise-engineering support, responsiveness, and agility.3

A key consideration for ID/NCW is the model-based design, configuration, and provisioning of 
information-sharing services specifically tailored, managed, and optimized to support well-informed 
maneuvering of geographically-dispersed forces.4 Other network-centric initiatives and methodologies 
share similar characteristics (e.g. network-enabled capability, network-centric organization).5 Thus, 
information and communications technology (ICT) and unified communications are key enablers for 
providing critical infrastructure components for information-sharing and related ID/NCW services.6 

An ongoing focus of work, as described herein, is to further explore and survey applicable 
technologies, reference models, architectures, resources, and capabilities (e.g. cloud-based distributed 
computing).7 Of particular interest are models and resources that can be utilized for incremental 
continuous-improvement of a persistent converged-infrastructure with standardized generically-defined
shared-services.8 The goal is to provide a model-based system-of-systems engineering (MBSE/SOSE)9 
oriented approach that can help to better identify/discover, characterize, and minimize the operational 
impact of such ID/NCW related events that can degrade ID/NCW ITI frameworks and cause Denied – 
Disrupted/Disconnected, Intermittent, and Low-bandwidth (D-DIL) conditions which impact overall 
mission performance. 

Thus, such applicable models, methods, and techniques help to identify, represent, and optimize the 
respective value-chains and enable performance engineering capabilities that address both functional 
and non-functional requirements.10 Application performance engineering is particularly of interest, due 
to the ongoing focus on methods "to develop and test application performance in various settings, 
including mobile computing, the cloud, and conventional information technology (IT)".11

Figures 1 and 2 highlight the type of ITI framework components and respective communication 
services that have been the focus of our ongoing work. Of particular interest are long-haul radio 
frequency (RF) and microwave line-of-sight (LOS) components of land-air-sea data-links deployed 
within an area of responsibility (AOR) and operating within a distributed ITI framework (i.e. ad-hoc 
network of airborne/surface networking-backbone and tactical-edge nodes).12 As highlighted by the 
upper block of the diagram in figure 1 (from [2]), such infrastructure components focus on the Internet 
Protocol (IP) based "off-board communication links" that support LOS platform-to-platform 
communication and networking capabilities.13  



Figure 2, from the Joint Communication Simulation System (JCSS) home page, highlights another 
example GOTS/COTS resource.14 As highlighted, JCSS enables stakeholders to assess performance, 
relative to operational scenarios and expected loads (i.e. traffic generation models).15 Note that existing 
data-transport and data-synchronization oriented tools, such as JCSS, typically have limited support for
mission scenarios that include potential D-DIL related events and associated degradation of the 
NCW/ID infrastructure that may impact overall operations. Furthermore, the incorporation of 
integration and interoperability (I&I) and cloud-based ITI framework challenges, are typically 
addressed to a somewhat limited extent.16 Such emerging I&I and ITI oriented challenges are the focus 
of the ongoing work described herein. In particular, this survey/overview and supporting discussion 
works to address the question of how to best develop a mission-driven experimentation-based 
assessment/validation framework that includes the respectively applicable use-case oriented measures 
of performance/effectiveness (MOP/MOE) metrics/indicators and enables continuous improvement of 
ITI framework services.17

1.2 Outline of Paper and Executive Summary

The overarching goal of this ongoing research effort is to incrementally leverage the longstanding 
ongoing trends toward service-oriented enterprise-computing and subsequent virtualization of system 
functions (e.g. abstraction, encapsulation, virtual function, generic function, function overloading, 
late/dynamic binding, duck typing, multiple dispatch, dynamic dispatch).18  This trend towards 
virtualization is complicated by the various types of capabilities and methods that support the 
decoupling of implementation details from more application-specific and hardware-specific constraints.
A variety of hypervisors and virtual machine (VM) managers provide a broader scope and basis for 
hardware virtualization.19 Network functions virtualization (NFV), which typically includes network 
virtualization and input/output (I/O) virtualization, further incorporates software-defined networking 
(SDN) and related technologies (e.g. software-defined environments).20 Thus, the need to continue to 
explore applicable emerging technologies, best practices, and standards for developing experimentation
frameworks, with a particular focus on providing reliable, robust, and resilient tactical-ISR 
communications and networking support capabilities that can be trusted to operate within a variety of 
operating conditions.

As highlighted within the following sections, much progress has been made within a range of domains 
and areas of specialization (i.e. domains of discourse), wherein each separately addresses various 
aspects of the associated ID/NCW ITI science and technology (S&T) needs.21  

Fig. 1 Platform Architecture: ALN Example [2] Fig. 2 Operational Workflow: JCSS Example [endnote 14]



Section two provides background information that helps to provide a working introduction to the need 
and associated payoff for developing the type of capabilities described herein. Related work with multi-
tier goal-oriented workflow management is covered within this context of ISR mission-support. 

Within section two, complementary connectivity and link management efforts are also discussed in 
some detail. For supporting D-DIL conditions within challenging environments, various aspects of 
inter-related command and control (C2) data-synchronization services (C2SS) and directional line-of-
sight (LOS) ad-hoc networking (e.g. connectivity/link management) efforts are surveyed and reviewed.

Section three covers standardized architectures and frameworks within both application and technology
domains. For application-domain related architectures, a full motion video (FMV) example highlights 
the incorporation of enterprise service bus (ESB) reference architectures for coordinating and 
orchestrating FMV dataflow between producer-consumer endpoints. Within this context of ESB 
architectures, examples of adaptive ESB architecture frameworks are introduced and discussed. Of 
particular interest are the logical architecture and associated adaptation-strategy mechanisms. 

With this initial introduction to adaptive enterprise computing components (e.g. adaptive ESB 
frameworks), self-optimizing enterprise architecture frameworks such as software defined networks 
(SDNs) and software defined environments (SDEs) are also discussed to further emphasize the 
emerging trend towards highly-virtualized service-oriented cloud-computing infrastructures. The 
continuous-optimization and continuous-assurance (i.e. enterprise services) capabilities of emerging 
SDN/SDE architecture frameworks are also covered to highlight the emerging trend towards 
intrinsically adaptive, self-healing, and resilient/robust enterprise infrastructures. Finally, within section
three, autonomic-computing models and associated frameworks, such as Rainbow, are introduced and 
discussed within this context of adaptive enterprise computing.

Overall, the combination of a standardized model-based information and communications technology 
(ICT) infrastructure (e.g. enterprise architecture, service oriented architecture, cloud computing), with 
the additional capabilities of self-awareness, adaptivity, and self-healing (e.g. autonomic computing), 
creates an order of complexity that includes not only the breadth and depth of the respective 
technologies, but also the socio-technical challenges of cross-disciplinary communication, alignment, 
cooperation, and collaborative life-cycle support.

Section four covers metrics, indicators, and capability assessment models, within applicable technology
domains. Examples from wireless networking and quality of service (QoS) focused best-practices and 
standards are covered within this section. 

Section five covers emerging technologies and architectures for self-adaptive and self-optimizing 
systems. Applicable streaming-video and wireless networking examples are highlighted and discussed. 
An example of a self-optimizing wireless-networking architecture that focuses on the multi-objective 
optimization of inter-related objectives (e.g. coverage, quality of service, throughput, latency/delay, 
energy efficiency, cost), is noted as particularly applicable to the focus of the work discussed herein.

Section six reviews applicable examples of risk management, reliability, and safety-engineering: 
models, standards, and best practices. Within this section, a number of standardized processes are 
highlighted, with a particular emphasis on the opportunity to re-purpose and tailor/augment such 
standards for development/certification of adaptive LOS data-links that demonstrate link-autonomy.

Section seven provides a high-level review of example change and adaptation models that focus on 



particular features of interest for developing link-autonomy: (i) design-pattern oriented approaches for 
developing adaptation strategies and tactics; (ii) latency-awareness oriented methods and techniques 
that address timing, coordination, and proactive adaptation needs.

Section eight further discusses the various aspects of technology domains and respective examples that 
were reviewed and surveyed within the respective sections. The need for adoption and tailoring of the 
surveyed models, architectural frameworks, standards, and best practices, is also discussed. The 
ongoing need for conceptual-level I&I models and standardized practices are also discussed.

Sections nine and ten respectively provide a summary/conclusion and short discussion of future work. 
The remainder of the paper includes sections for acknowledgements and a list of technical references.

2. Background: Previous/Ongoing Tactical-ISR Support Efforts

2.1 Multi-Tier Goal-Oriented Workflow Management

The diagram in figure 3 illustrates how generic baseline performance indicators (e.g. key performance 
indicators - KPIs) can be associated with standardized baseline widgets to develop mission-specific 
business activity monitoring resources (e.g. dashboards) tailored to a specific stakeholder context.22 
Such constructs can, in principle, have baseline default configurations for DoD Architecture 
Framework (DoDAF) activities, standardized mission tasks (e.g. Universal Joint Task List – UJTL), 
mission essential task lists (METLs), and associated master scenario event lists (MSELs).23 

Figure 4 illustrates an adapted version of the generic Goal, Question, Indicator, Metric (GQIM) process
that is a variant of the Goal Question, Metric (GQM) methodology.24 The diagram has been tailored to 
illustrate the applicability to ID/NCW oriented applications. GQM, GQIM, and more recent variants, 
such as GQM+Strategies, are examples of methods that provide concepts and actionable steps for 
creating the links between goals, objectives, workflow, and measurement-based decision-making.25 
Thus, baseline templates can be developed and deployed as stakeholder-specific dashboard elements. 

Fig. 3 Standardized Dashboards and Widgets: Example



Furthermore, such mission-thread performance metrics and indicators can be dynamically tailored to 
better reflect and support D-DIL variants of typical mission-execution profiles. This type of business-
logic based workflow-support capability has also continued to mature. For example, rule-based 
management systems (RBMS) represent such business-logic as business-rules within enterprise 
architecture or service oriented architecture (EA/SOA) business-rule engine resources (e.g. Wildfly, 
Drools).26 Improved capabilities for semantic interoperability, content management, lexicon services, 
and advanced wiki-style user-interfaces, are examples of rapidly maturing technologies that further 
enable dynamically-adaptive approaches [3-6].27 Thus, applicable parameters of MOPs, MOEs, and 
related performance assessment models can be represented, managed, and dynamically tailored during 
the execution of the respective mission-threads and scenarios. The development of this type of 
capability is an ongoing S&T objective of this effort.

2.2 Data-Synchronization Services

Figures 5 and 6 are diagrams from the command and control (C2) synchronization services (C2SS) 
research and exploratory development effort [7]. Figure 5 illustrates the concept of using dependency-
injection, adapter, and other applicable patterns for in-line insertion and weaving of C2SS aspects and 
respective functionality.28  In principle, this includes insertion of context-dependent functions that help 
to continuously improve data-synchronization capabilities. Note that aspect-oriented software 
development and programming techniques were originally developed to address the need to logically-
encapsulate (i.e. virtualize) cross-cutting areas of concern and functionality (e.g. reporting, data 
logging).29 For service-oriented architectures/models, this translates into conceptually managing similar
types of methods (e.g. data synchronization) that may be associated with a variety of ITI services. 

Figure 6 illustrates how functional data paths can be traced from the mission-threads and activities of a 
given mission-area, to the specific widgets that provide the necessary information to the respective 
stakeholders. This type of dataflow oriented mapping of information-support requirements can be 
utilized for tracing information-exchange requirements of the respective widgets. 

Fig. 4 Standardized Widgets and Indicators: Example (POAM – Plan of Action and Milestones;
JCA – Joint Capability Area; UNTL - Universal Naval Task List)



Overall, C2SS types of services are intended to augment existing ITI frameworks with data-
synchronization functions that resolve capability gaps and S&T challenges. Due to the open number of 
possible types of mission-execution environments, different types of solution implementations are 
anticipated and expected. Thus, as highlighted, the definition and use of generic interfaces and abstract 
methods (i.e. services) hide implementation and context-dependent details, enabling continuous 
improvement through incremental incorporation of alternative context-dependent variants.30

Thus, the technical details of the ITI framework dependencies (e.g. physical/logical network topology, 
schedulability, worst case execution time) can be factored into the logical dataflow constraints and 
information exchange requirements (IERs) that are more directly associated with potential operational 
impact (e.g. total latency, operator response).31 The work discussed herein is considered a continuation 
of an ongoing effort that works to further address MBSE/SOSE S&T challenges associated with 
developing this type of mission-driven performance assessment capability. Note that a primary goal of 
this research is to identify algorithms and methods that enable the resulting ITI framework to be as 
reliable, dependable, available, robust, fault tolerant, and resilient as possible, while also supporting an 
ability to gracefully degrade, if necessary.32

2.3 Directional LOS Ad-Hoc Networks: Connectivity and Link Management

Figures 7-10 provide a high-level overview and help to illustrate the layering of logical subdomains of 
the multilayer (i.e. multitier) models of the Open Systems Interconnection (OSI) protocol stack, 
EA/SOA stack, and cloud-services stack.33 From an object-oriented distributed processing perspective 
(e.g. Reference Model of Open Distributed Processing - RM-ODP), the highly-desirable feature of 
"information hiding" is provided by encapsulation of generic functionality within the respectively 
defined layers. Thus, enabling the hiding of more implementation-specific details by definition of the 
respective generic (i.e. standardized) application programming interfaces (APIs).34 This also enables 
opportunities to simultaneously optimize the degree of coupling and cohesion between inter-dependent 
areas of system functionality.35

For the type of directional LOS networking support that has been the focus of ongoing efforts, the 
connectivity and link management mission-support conceptually map into such layered architectures 
and respective domain-specific "services stacks" (i.e. OSI, EA/SOA, cloud). Thus, the ongoing focus 
towards generically defined cross-layer/cross-platform IP-based connectivity and link-management 
capabilities. Figure 7 highlights the logical-layering of directional line-of-sight (LOS) ad-hoc 

Fig. 6 Dataflow and Data-Path Mapping/Tracing [7]Fig. 5 C2 Data-Synchronization Services (C2SS) [7]



networking support, in terms of the layering of subdomains of types of functionality (i.e. logical 
scoping and encapsulation) that span multiple layers of the OSI protocol stack.36 

As highlighted within the more detailed block diagram in figure 8 (from [8]), there are a number of 
logical-layer services that are needed for facilitating mission-driven connectivity management and 
logical IP-based dataflow management. Thus, within these middleware layers, the respective 
application-layer tasks, such as Warfighter tasks (e.g. C2; intelligence, surveillance and reconnaissance 
- ISR) and mission-support tasks (e.g. data-synchronization, entity management) are supported.37 Such 
logical-layer services collaboratively work with physical-layer oriented RF/microwave LOS link-
management tasks to establish objective and threshold values for link-management MOPs/MOEs that 
can most effectively support Warfighter policies and needs (i.e. QoS, IERs). Within the context and 
perspective of the OSI protocol stack, the diagram (figure 8) illustrates RF/microwave LOS 
comms/networking link-management challenges.38 

Figure 9 is a high-level cloud-based conceptual view that highlights the mapping of the connectivity-
manager and link-manager functionality (i.e. services) into their respective layers of a cloud stack. As 
highlighted in figure 9, the EA/SOA/Cloud oriented services stacks parallel the comms/networking 
oriented OSI model (i.e. protocol stack).39 Within a cloud-computing model of computation, service 
developers and providers would typically interact with a variety of ITI framework oriented service 
domains, such as the following: Platform-as-a-Service (PaaS), Infrastructure-as-a-Service (IaaS), 
Networking-as-a-Service (NaaS), "Metal/Hardware-as-a-Service (MaaS)".40 Note that from a cloud-
computing perspective, the functionality of software-intensive systems can be mapped into more highly
virtualized domains, such that there can be a number of different logically defined domains that support
the respective "as-a-Service (aaS)" areas of functionality.41

As illustrated in figure 10, standardized sequencing diagrams such as Unified Modeling Language 
(UML) interaction/sequence diagrams, enable the representation of the operational and technical details
for information-exchange events and their respective ordering.42  From a standardized task management
perspective, the representation and management of IER related information (e.g. latency distributions 
for prototypical information-exchange events) helps to identify and assess the parameters and 
respective objective/threshold values that determine the risk status for a specific mission task or 
collection of tasks (e.g. METL). This also addresses network-scheduling and business-logic aspects of 
battle management. This type of task planning and workflow management is, in principle, supported 
within recently developed standards and battle management language (BML) capabilities [10-11].43 

Fig. 7 ISO Model (Services Stack): ISR-Support Ex. [8] Fig 8  ISR Communication Services: Block Diagram [8]



Figures 11 and 12 highlight the technical aspects of mission-task IERs, and their respective execution 
profiles, in terms of latency. As illustrated by the horizontal dashed-lines in figure 11, a baseline 
mission-thread may have identified relatively fixed objective and threshold levels for the respective 
information-exchange latencies. During mission execution, the respective EA/SOA/Cloud based 
communications services may in fact have a highly-variable timing profile (e.g. red-line in figure) that 
determines under which time-intervals the IERs may be met for a given task. Due to the nonstationary 
stochastic nature of such profiles, time-indexed estimates of the respective probability distributions are 
necessary for potentially tracking such data-synchronization variability and associated risks.

Figure 12 illustrates a more desirable situation where the estimates of the dynamically changing 
information-exchange timing-profiles are tracked and enable the dynamic self-adaptive management of
the respective communications services. In this case, the communications services (e.g. traffic shaping, 
network scheduling) are able to better schedule the respective IERs, relative to the anticipated time-
intervals where such requirements can be expected to be satisfied. 

Thus, the overall capacity planning, provisioning, and dynamic management of the physical layer (via 
the link-manager) and logical layer (via the connectivity-manager) enables the self-adaptive and 
collaborative tuning/optimization of the communications services and associated physical resources.44 
This includes, in principle, supply chain management (SCM) related techniques/methods that 
incorporate rapidly-deployable sea-launched unmanned-platforms, each with multiple high-bandwidth 
RF/microwave LOS links. Thus, the potential risk of not being able to meet IER constraints during 
mission-execution, is further minimized.

Fig. 9 ISR Communication Services: Block Diagram [8] Fig. 10 ISR Comms Services: Cloud-Based View [8]

Fig. 11 Connectivity Management: Ex. Need (As-Is) [8] Fig. 12  Connectivity Management: Objective (To-Be) [8]



Most importantly, much needed MOP/MOE estimates need to be generated within the respective design
phases of the inter-dependent subsystems (e.g. RF/microwave LOS link management, unmanned-
systems). Thus, the respective IER related statistics can provide improved working baselines for 
collaborative assessment and validation of mission-driven link-management MOPs/MOEs. 

For example, risks due to information-exchange delays and compromised data-integrity (e.g. D-DIL 
conditions), can be represented and managed at the stakeholder workflow-level of mission-support 
services. Within the commercial sector, business-rules approaches are another example of this type of 
management of dynamic work environments. Business rules are especially useful for establishing and 
managing policies for how to manage situations that are outside normal (i.e. baseline) operating 
conditions. From a systems design perspective, this type of information is useful for assertion oriented 
and process calculus methodologies (e.g. design-by-contract, pi-calculus, process calculi) that utilize 
conditional-execution specifications (e.g. precondition, postcondition, invariant).45 In addition, rule-
based systems are examples of event-driven and declarative programming types of systems designs that
are commonly utilized for time-sensitive distributed-control applications and cyber-physical systems.46

3. Standardized Architectures and Frameworks: Examples

3.1 Application-Oriented Architectures: Full Motion Video (FMV) Example

Figures 13-15 (from [12]) illustrate a recently developed ITI oriented architecture that focuses on Navy
FMV (NFMV) data-transport and data-mediation needs. Figure 13 is the high-level operational view 
(OV-1) for the overarching architecture model. Figure 14 is a DoDAF V2.0 Capability View (CV) 
diagram, called the Capability Taxonomy (CV-2). Note that this diagram highlights where the NFMV 
functionality and respective ISR communications services fit within the context of a standardized 
capability taxonomy (i.e. Joint Capability Areas - JCA). Figure 15 depicts the "NFMV rich services 
enterprise service bus (ESB)" that resulted from the architecture modeling effort.

Fig. 13   FMV Example: High-Level View (OV-1) [12]



Ideally, this type of rich-services ESB can be integrated and aligned with an overarching meta-model 
that more comprehensively includes the breath and depth of the ITI related technology domains. In 
particular, enterprise computing (e.g. software-defined environments), connectivity/link management, 
and autonomic-computing aspects of data-transport, data-mediation, and data-synchronization services 
(i.e. areas of concern) need to be more explicitly addressed, represented, and incorporated. 

Fig. 15  FMV Example: Rich Services Enterprise Service Bus (ESB) [12]

Fig. 14 FMV Example: Capability Taxonomy (CV-2) [12]



3.2 Adaptive Enterprise Service Bus (ESB): Example Framework

Figures 16 and 17 (from [21]) illustrate an ESB-based logical architecture that incorporates adaptation 
and monitoring within the context of workflow management and automation (e.g. Business Process 
Model and Notation – BPMN; XML Process Definition Language - XPDL).47 Note that the ESB is 
working in concert with an "adaptation and monitoring engine (decision mechanisms)" and Web 
Services Business Process Execution Language (WS-BPEL) engine. As highlighted in figure 17, 
adaptation requirements are achieved by monitoring of events that trigger adaptation mechanisms 
implemented for supporting the respective adaptation strategies.

Autonomic computing and other self-managed architectures tend to address similar QoS issues within a
much broader scope than is within the context of enterprise information portal (EIP) focused ESB-
based architectures.48 Due to the rapid maturity of such adaptive-workflow capabilities, these are 
additional areas of work that may provide the flexibility/agility needed to address D-DIL conditions.

From an architectural model-based systems engineering (i.e. MBSE/SOSE) perspective, the logical 
separation of ESB concerns (i.e. data-transport, data-mediation, data-synchronization) versus 
autonomic computing services, can in principle, be independently represented and merged/weaved into 
application-specific and platform-specific configurations.49 Architecturally, this is another example of 
the types of open research challenges that are the focus of ongoing work. From a practical and 
pragmatic perspective, the issue is ultimately a question of where and how the adaptation and 
reconfiguration logic is to be represented and executed, and at which level of abstraction (e.g. 
modeling-level vs implementation-level). 

3.3 Self-Optimizing Networks: Software Defined Environment (SDE)

Figures 18 and 19 (from [14]) illustrate the role of continuous optimization, as a value-added service 
and integral component of highly virtualized EA/SOA/Cloud-based frameworks, such as software 
defined environments (SDE). Note that software quality parameters and key performance indicators 
(KPIs) help to parameterize the stakeholder (e.g. user) utility functions and drive the optimization 
process that dynamically manages the virtualized infrastructure. Figure 19 illustrates the integration of 
continuous dynamically-managed assurance for maximizing resiliency and security for SDE 
frameworks. For current work, this is a key enabler for developing data-link focused adaptation-
strategies that empower such data-link terminals to be more robust/resilient (i.e. autonomous).

Fig. 16 Adaptive ESB: Logical Architecture [21] Fig. 17 Adaptive ESB: Strategies and Mechanisms [21]



Figure 20 (from [19]) is an example of a resilience management framework that utilizes a SDE/SDN 
type of network infrastructure. The use of management patterns, resilience management functions, and 
event monitoring/correlation provide a patterns-based event-driven approach. Also, note that the 
resilience targets are determined by service level agreements (SLAs), wherein allowable deviations are 
a function of the role assigned to a given managed object. Thus, much of the desired or necessary 
characteristics of the previously discussed data-transport, data-mediation, and data-synchronization 
related capability-needs are also addressed within this example resilience-management framework.

Figures 21-23 (from [20]) highlight an autonomic-computing type of hierarchical feedback model 
within a web-based multi-layered architecture framework. In this case, the focus is on development of 
Hypertext Transfer Protocol (HTTP) Adaptive Streaming (HAS) and associated mechanisms for quality
of experience (QoE) optimization of video traffic, which is an applicable use-case for ITI 
communication services.

Fig. 18 Outcome-Optimized Framework for Software Defined Environments: Example [14]
(SDE – Sofware Defined Environment; IaaS – Infrastructure as a Service)

Fig. 19 Continuous Assurance for Resiliency and Security within Software Defined Environments: Example [14]



Fig. 20 Resilience Management Framework: Example [19]

Fig. 21  Dynamic QoE Optimization: Example Autonomic-Computing Architecture Model [20]

Fig. 22 Dynamic QoE Optimization: Ex. Architecture [20]



Thus, from a design patterns and respective meta-modeling perspective, there may be opportunities for 
developing platform-independent models (i.e. meta-models) that capture the similarities and differences
between a variety of domains, which include reconfigurable video-streaming, reconfigurable networks, 
wireless networking, resilient networking, autonomic computing, and ESB architecture models. 

3.4 Autonomic Computing Frameworks: Rainbow Example

Figure 24 (from [25]) illustrates a high-level conceptual model of an autonomic manager that primarily 
executes a Monitor-Analyze-Plan-Execute (MAPE) loop, relative to a given managed element. Figure 
25 (from [49]) is a high-level block diagram of the Rainbow Framework, which is an example of an 
architecture-based variant of the autonomic-computing MAPE model. 

Other conceptual models, such as Boyd’s observe-orient-decide-act (OODA) loop and Deming’s plan-
do-check-act (PDCA) circle/cycle, provide similar types of adaptive meta-modeling capabilities that 
also enable dynamic self-healing behaviors and help to enable improved overall performance.50

As highlighted within [26], Rainbow is a particular instance of an architecture-based self-adaptation 
framework, wherein probes are utilized to monitor the target system and gauges are utilized to 
aggregate and abstract monitored information to update the respective control models (maintained with 
the model manager). These models consist of system architecture and environment models that are used
to reason about the target system and its execution context. Rainbow uses an architecture evaluator to 
detect when a target-system is in a state suitable for repair, an adaptation manager to select an 

Fig. 23 Distributed End-to-End QoE Assurance System: Example [20]

Fig. 24 Monitor-Analyze-Plan-Execute (MAPE) Model [25] Fig. 25 Rainbow: Example of Autonomic Management [49]



appropriate repair strategy, and a strategy executor to carry out the actions in the strategy, along with 
appropriate infrastructure for effecting changes in the target system. This type of autonomic-computing 
framework is of interest due to the architecture-based self-adaptation capabilities that are supported.

The above examples are a sampling of resources that can be adapted and tailored towards a more 
highly integrated and interoperable family of systems and respective capabilities. This type of ITI 
experimentation framework also facilitates model-integration and co-design between EA/SOA/Cloud 
based functionality (e.g. enterprise services). Furthermore, this type of unified lifecycle support process
can potentially provide a common basis for a more cohesive workforce development and training 
process that also addresses variance reduction needs within challenging budgetary climates.

4. Capability Assessment: Standardized Metrics and Models

4.1 Example EA/SOA/Cloud-Based Framework

Figures 26-28 (from [29]) are a set of diagrams generated by an effort that is working towards the 
development of a capability-assessment framework. Figure 26 illustrates the taxonomy of the 
characteristics of the service measurement index (SMI).51 Note that the SMI defines a framework and 
method for the calculation of a relative index, which may be used to compare IT services against one 
another, or to track services over time. 

Figure 27 is a table that summarizes a number of the main components (i.e. elements) which typically 
need to be considered when assessing an ITI (e.g. enterprise computing) framework. This helps to 
provide a more well defined structure for an assessment process that measures specific characteristics 
and best captures the data needed for assessing capabilities. Figure 28 is a diagram that provides an 
overview of the overarching phases of a typical capability assessment process.

Fig. 26  Service Measurement Index (SMI): Taxonomy of Standardized Srvc Characteristics and Metrics/Indicators [29]



4.2 Wireless Networks: Quality of Service (QoS) Focused Examples

Figure 29 (from [30]) is a more specific example of a wireless-networking focused taxonomy that 
provides a classification system and data model for wireless-communications oriented quality of 
service (QoS) metrics that can be incorporated into a unified ITI framework.52 Figure 30 (also from 
[30]) is an example taxonomy of the types of QoS based enhancements for which QoS metrics can 
assess the respective contribution to achieving QoS goals and objectives. 

Fig. 28 Capability Assessment Process: Overview [29]

Fig. 29 QoS Taxonomy for Wireless Networks: Example [30] Fig. 30 MAC Layer QoS Enhancement Schemes: Ex. [30]

Fig. 27 Main Components (i.e. elements) of Standardized Assessment Process: Example [29]



5. Self-Adaptive and Self-Optimizing Systems: Example Models

5.1 Requirements Modeling & Analysis

Figures 31 and 32 are from [32]. As discussed in [32], other investigators have previously proposed 
classification of modeling dimensions and optional degrees for self-adaptive software systems. The 
classification of modeling dimensions illustrated in figure 31 is an example that draws on (and derived 
from) such previous work [33]. Each modeling dimension describes a particular facet of the system that
is relevant to self-adaptation. As noted within [32], “by considering these dimensions during modeling 
requirements and systems, the produced models will be more powerful.”

Figure 32 similarly draws upon and is derived from previous work [34]. In this case, the diagram 
illustrates and highlights that other investigators have previously proposed assurance characteristics 
(i.e. dimensions) for self-adaptive software systems. As noted within [33], the original authors of [34] 
proposed 17 assurance criteria for self-adaptive systems. From the perspective of three basic categories 
(i.e. effectiveness, effects and consumption,) a set of eight criteria and three extended aspects should be
considered as the assurance dimensions for runtime adaptation (figure 32). Effectiveness captures the 
validity of the adaptation. Effects characterize the impact of adaptation upon the system. Consumption 
is concerned with the consumed time and resources. By illustrating these dimensions, researchers can 
justify the trustworthiness of their approaches and compare their results with others’.

Fig. 31 Requirements Modeling for Self-Adaptive Software-Intensive Systems: Example Taxonomy [32]

Fig. 32 Assurance Dimension for Self-Adaptation: Example [32]



5.2 Self-Healing Technologies: Video-Streaming Example

Figure 33, from [35] is a block diagram that illustrates the generic dataflow for this type of data-
streaming application. Note that LOS data-links are critical elements within the network, due to the 
ability to provide freespace (e.g. wireless) information exchange capabilities that can support higher 
data-rate streaming needs. As noted by [35], services that deliver video-streaming content, typically 
have the following characteristics: (i) Time delivery requirements, such that the timing of the delivery 
of the video is critical for providing satisfactory customer experience; (ii) The relationship between the 
transmission of data with their consumption is different in download and streaming models, such that in
the typical download model, the client application (e.g., web browser) retrieves the data objects from 
the server (e.g., web server) and decodes/displays them to the user after completely receiving them; and
(iii) The choice of the data delivery protocol adopted for video-streaming services dictates the flow of 
data and client-server interactions during the data transmission period. Note that for the types of safety-
critical scenarios that are the focus of this effort, the above services include time-critical store-and-
forward capabilities (e.g. threat alert, intruder detection).

Figure 34, also from [35], highlights a taxonomic model of the problem space for self-healing, as 
applied towards developing self-healing video-streaming applications (e.g. FMV). As reviewed and 
discussed in a previous section, this type of application often utilizes RF/microwave LOS data-links. 
Thus, the applicability and potential for utilization of this type of adaptation (i.e. self-healing) model. 

The taxonomy in figure 34 covers four categories of aspects for the self-healing problem:

• Fault-model. The fault-model states what faults or injuries should be self-healed, which includes the 
fault duration, fault source (e.g., operational or implementation errors and defective system 
requirements) and other fault characteristics;

• System response. System response aspects consider fault detection, specification of the degree of 
degraded operation provided by self-healing, fault response and fault recovery issues. Fault detection is
a broad area that includes techniques such as application semantics-driven assertions, supervisory 
checks, computer answers examination, comparison of replicated components, and online self-testing, 
among others. On the other hand, recovery can be performed partially or completely. The effectiveness 
of recovery depends on the built-in redundancy and fault response techniques implemented (e.g., fault 
masking, retry, rollback and rollforward operations);

• System completeness. The incompleteness of specifications and designs and the limited knowledge 
of systems have implications on their recoverability. A thorough understanding of application semantics
and about the system behavior in the absence and presence of faults is required to develop self-healing 

Fig. 33 Elements of a Video-on-Demand (VoD) video-streaming service: Example [35]



systems. However, there are many challenges to obtain the complete knowledge about the system, such
as, the large frequency of updates and the use of COTS components by several modern systems. Self-
knowledge and system evolution are important research topics akin to this problem;

• Design-context. The design-context addresses abstraction-level problems, such as component-level 
heterogeneity, behaviors, system scope, system linearity and user involvement degree.

Note that when the supporting data-links (e.g. freespace LOS communication channels) are not able to 
provide the necessary information-exchange support, this type of situation is generically considered to 
be a type of network anomaly. The goal of the effort described herein, is to minimize the possibilities of
such network-related data-link anomalies, to the greatest extent possible. Also, in terms of cross-layer 
(i.e. LAN) and cross-platform (i.e. client-server) dataflow, the goal is to provide a fully integrated self-
healing solution whereby an autonomic computing infrastructure (e.g Rainbow) incorporates cross-
layer cross-platform strategies/tactics that more naturally adapt to such situations.

Thus, the primary goal is to continue to provide sufficient solutions that meet operational requirements,
while working to also simultaneously optimize the system performance to the extent possible that the 
minimum requirements (i.e. threshold conditions) can be exceeded (i.e. objective thresholds). In the 
video-streaming context, an example of this type of self-healing strategy would be to optimize the 
richness of the media, relative to the mission (i.e. scenario, use-case) IERs. Ideally, the predictive-
analytic capabilities of an autonomic-computing infrastructure can enable proactive latency-aware 
adaptation strategies that further optimize overall performance. Thus, the need for self-healing can be 
avoided by the improvements in dynamically managing the spatial-temporal scope and respective 
trade-space of the overall mission and context dependent IERs.

5.3 Self-Optimizing Wireless Networks: Example Model

Figures 35 and 36 (from [31]) provide high-level views of system characteristics and associated 
metrics/indicators, as they apply to wireless sensor network optimization.  Figure 35 highlights a time-
ordered taxonomic representation of a number of parameters that respectively apply to the inputs, 
constraints, and outputs of such self-adaptive systems. Figure 36 provides a illustration of the inter-
relationships between multiple optimization objectives for wireless systems. 

Fig. 34 Self-healing problem space: Example [35]



6. Risk Management and Safety Engineering: Models/Standards

6.1 Software Risk/Reliability Modeling: Example ISO/IEC Standards

Figure 37 (from [35]) illustrates that dependability is a general concept associated to critical systems. 
Thus, system dependability is defined by the ability to deliver a service that can justifiably be trusted. 
Dependability is an integrative concept that encompasses most security attributes. Like dependability, 

Fig. 35 Generic multi-objective optimization problem in wireless networks [31]

Fig. 36 Relation between desirable objectives in wireless networks [31] (Cov -Coverage; QoS – Quality of Service;
NB – Network/Battery Life; EE – Energy Efficiency; Cost – Cost; D – Delay; T – Throughput; PER – Packet Error Rate)



security includes integrity and availability attributes, but requires additionally confidentiality which 
means the absence of unauthorized disclosure of information.

Figure 38 (from [37]) is from a recent literature survey/review that focuses on the knowledge area of 
software product quality.53 As highlighted within the survey, the state-of–the-art within this domain is 
led by international standard proposals such as those from International Organization for 
Standardization / International Electrotechnical Commission (ISO/IEC) or Institute of Electrical and 
Electronics Engineers (IEEE) and other more operationally-specific standards, such as military 
standards (MIL-STD) or European Cooperation for Space Standardization (ECSS). Within this context,
the ISO/IEC 25000 “Software Product Quality Requirements and Evaluation” (SQuaRE) series of 
standards were selected as a reference framework. Within the figures, note that fault tolerance plays a 
key role within the context of software reliability modeling and associated standards. Figure 39 (also 
from [37]) highlights the reliability characteristics of the SQuaRE series of standards. Note that fault 
tolerance and recoverability are also considered critical features of such reliability standards.

6.2 Software-Systems Safety-Engineering: Example

Figures 40-42 (from [40]) are example views (i.e. diagrams) from the Joint Software Systems Safety 
Engineering Handbook (JSSSEH). These diagrams provide a more specific example of a set of best 
practices and associated standards that can be applied toward developing a model-based systems of 
systems engineering (MBSE/SOSE) approach for enabling physical-layer freespace communication 
links to provide more robust/resilient information-exchange (e.g. FMV) support services. 

Figure 43 (from [41]) further illustrates availability of standardized processes that can be augmented 
and tailored towards developing a lifecycle approach for engineering more robust/resilient IP-based 
directional (i.e. RF LOS) data-streaming and respective communications/networking support. Other 
references similarly work to achieve similar standards-based capabilities [42-45].

Fig. 38 Reliability Modeling: Domain/Context Keywords [37]Fig. 37 Dependability and security attributes [35]

Fig. 39 Reliability Characteristics: Standardized Definitions (SquaRE) [37]



6.3 Functional Safety

Figures 44-49 (from [39]) are example views of the lifecycle characteristics and associated definitional 
elements that facilitate an architectural approach to assuring functional safety within SOSE lifecycles. 

Figure 44 provides an overview of the four principle classes of counter measures: fault forecast, fault 
prevention, fault removal, and fault tolerance. Regarding the counter measures used in practice as well 
as the respective demands in safety standards, these four classes cover all possible measures. Note that 
the diagram in figure 44 shows at which point in the fault-error-failure cascade, such counter measures 
can be applied. Figure 45 highlights the standards-based elements of safety-related development. 
Figure 46 highlights the coupling of the MBSE/SOSE development lifecycle with the safety-assurance 
lifecycle. Figure 47 highlights the central role of dependability and the associated categorical 
characteristics of dependability attributes, means and threats. 

Figure 48 is an example of an architectural synthesis of these complementary concerns of functional 
capabilities (e.g. SOSE) and nonfunctional capabilities (e.g. safety assurance, dependability). Figure 49
highlights the incorporation and respective role of safety models within the safety assurance lifecycle. 

Fig. 40 Integration of Eng. Personnel & Processes [40] Fig. 41 Risk Assessment Matrix [40]

Fig. 42 Hazard Reduction: Order of Precedence [40] Fig. 43 System-Safety Process: Example [41]



The above referenced examples highlight why safety models are considered critical architectural 
components for developing strategies that enable freespace LOS data-links to be more robust/resilient, 

Fig. 44 Safety-Engineering Counter Measures: Ex. Model [39] Fig. 45 Safety-Related Dev.: Ex. Elements [39]

Fig. 46 Development and Safety Eng. Lifecycles [39] Fig. 47 Dependability: Definitional Elements [39]

Fig. 49 Safety Models in Safety Assurance Lifecycle [39]Fig. 48 Safety Engineering Lifecycle [39]



while also optimizing overall performance. Within this context, a number of assurance oriented 
models/architecture, standards, and best practices can be readily applied and tailors

6.4 Multiple-Viewpoint Models: Additional Examples

Figures 50-52 (from [52]) highlight a methodology for the systematic ENgineering of TRUstworthy 
Self-adaptive sofTware (ENTRUST). ENTRUST uses a combination of the following: (i) design-time 
and runtime modelling and verification; and (ii) industry-adopted assurance processes to develop 
trustworthy self-adaptive software and assurance cases arguing the suitability of the software for its 
intended application. As shown in Figure 50, the closed-loop control-system paradigm involves using 
an external software controller to monitor the system and to adapt its architecture or configuration after 
environmental and internal changes. ENTRUST incorporates autonomic-computing and goal-oriented 
assurance argument patterns for supporting this type of dynamic control functionality.

As highlighted in figure 51, the assurance cases are represented in the Goal Structuring Notation 
(GSN), a community standard widely used for assurance case development in industry. Strategies are 
used to partition an assurance argument and describe the nature of the inference that exists between a 
goal and its supporting goal(s). The rationale (assumptions and justifications) for individual elements of
the argument can be captured, along with the context (e.g. to describe the operational environment) in 
which the claims are stated.

Figure 52 illustrates the stages and key artefacts of the ENTRUST methodology. In line with the two 
principles underpinning the methodology, its first stage involves the development of verifiable models 
for the controller, controlled system and environment of the self-adaptive system used throughout the 
remaining stages, and multiple stages reuse application-independent software and assurance artefacts.

Fig. 50 Closed-Loop Control: Ex. Block Diagram [52] Fig. 51 Example of an assurance argument pattern [52]



7. Change and Adaptation Models: Examples

7.1 Adaptation Strategies: Design-Pattern Oriented Approach

Figures 53 (from [54]) lists characteristics and attributes of an example adaptation design-pattern 
template.  Figure 54 (also from [54]), highlights similarities and differences between a model-based 
autonomic-computing (e.g. Rainbow), versus a more design-pattern oriented approach to developing 
and representing adaptation strategies. Thus, highlighting architectural variants of adaptation strategies.

Fig. 52 Stages and Key Artefacts of the ENTRUST Methodology [52]

Fig. 53 Adaptation Design-Pattern Template: Example [54]



7.2 Latency Awareness: Timing, Coordination, & Proactive Adaptation

Figures 55 and 56 (from [46]) provide an example of an safety-assurance oriented approach that 
implements a supervisory-control and respective hazard monitoring capability. As highlighted in figure 
55, this type of architecture is functionally similar to architecture-based autonomic-computing 
frameworks, such as Rainbow. Figure 56 is an example of timing and hazard-level dynamics that apply 
to the type of IERs and respective latency requirements discussed in previous sections.

Fig. 54 Elided structural models: Rainbow-framework built (Z.com) versus pattern-based (ZAP.com) [54]

Fig. 55 Overview of model-based safety supervisory control, & dynamic hazard monitoring for safety interventions [46] 



Figures 57 and 58 (from [47]) highlight the extension of systems-theoretic safety analyses to 
incorporate the need for improved coordination across the hierarchy of inter-dependent activities and 
events (i.e. strategies, decisions, actions,, outcomes) that are inherent to monitoring and managing 
safety related concerns (i.e. potential hazards).

The proactive latency-aware (PLA) adaptation is an approach for self-adaptive systems that improves 
over reactive adaptation by considering both the current and anticipated adaptation needs of the system,
and taking into account the latency of adaptation tactics so that they can be started with the necessary 

Fig. 57 Coordination of Interdependent Activities: Ex. Timeline [47]Fig. 56 Illustration of hazard level dynamics [46]

Fig. 58 Systems Approach to Safety: Incorporation of Coordination Capabilities [47] (STPA - (System-Theoretic Process
Analysis; CAST  - Causal Analysis based on STAMP; STAMP - Systems-Theoretic Accident Model and Processes)



lead time, as illustrated by figure 59 (from [57]). Figure 60 (from [57]) is an illustrative example of the 
model-based latency-aware proactive adaptation algorithm. Using dynamic programming and relying 
on a prediction of the environment for the duration of a system run, their algorithm can find the 
adaptation decision that at each time step maximizes the future aggregate utility, while accounting for 
the penalty of switching configurations. This is another example of an emerging capability that can 
help address timing and coordination related challenges.

Figures 61 and 62 (from [55]) illustrate how both the PLA and the Control-based Requirements-
oriented Adaptation (CobRA) framework map into the MAPE-K (i.e. monitor – analyze – plan – 
execute – knowledge) model of autonomic-computing. As highlighted in the daigram, the different 
MAPE stages share a knowledge base that integrates them, and cover the activities that are carried out 
by the control loop, namely: (i) monitoring the system and the environment; (ii) analyzing the 
information monitored and deciding whether the system has to adapt; (iii) planning the best course of 
action for adaptation; and (iv) executing adaptation. The CobRA approach also follows the MAPE-K 
model, combining principles from Requirements Engineering and Control Theory. The architecture of 
CobRA is depicted in figure 62, where each component corresponds to one of the MAPE stages.

This correspondence of the MAPE-K model with both PLA and CobRA, demonstrates an ability to 
map autonomic-computing oriented adaptation-strategies across various levels of dynamic control. For 
developing link-autonomy capabilities, this is especially useful due to the cross-layer cross-platform 
aspects of the respective freespace LOS data-link connectivity. Note that the respective 
communications terminals primarily reside within the physical and data layers of the protocol stack.

Fig. 59 Adaptation Transition Patterns: Example [57] Fig. 60 Latency-Aware Adaptation: Ex. Algorithm [57]

Fig. 61 Proactive Latency-Aware (PLA) Adaptation Loop [55]
Fig. 62 Control-based Requirements-oriented Adaptation

(CobRA) Framework [55]



8. Discussion
For developing link-autonomy and associated experimentation support for data-transport, data-
mediation, and data-synchronization, the previous sections provided representative examples of the 
areas of work that need to be addressed. Much of the discussion was from a MBSE/SOSE perspective 
and position of adopting, tailoring, and merging models/methods that are available within their 
respective application domains. In contrast to the more immediate incremental focus of the previous 
sections, this section focuses on the long-term end-goals, objectives, and desired outcomes. 

As indicated within the previous sections, much of the technologies surveyed can incorporate and 
immediately leverage available models, frameworks, and resources, while also providing the basis for a
roadmap for longer lead-time objectives. A key distinction of this effort is the intent to incorporate 
taxonomies of functions, algorithms, and their generic context-dependent utilization. With this context, 
an added objective is to more explicitly incorporate conceptual and abstract models that are otherwise 
more removed from the engineering and implementation details of ITI frameworks. The end-goal is to 
at least provide an explicitly defined conceptual accounting and mapping for MBSE/SOSE based 
development of ITI frameworks. This type of conceptual milestone for MBSE/SOSE enables the ability
to more directly work through and further develop the foundational aspects of the respective end-goals.

The initial steps are underway for developing this type of virtualization of algorithmic and ITI services 
capabilities. Development of virtual networks of representative self-adaptive RF/microwave LOS 
nodes provides a basis and foundation for assessing how to best accommodate and support 
development/experimentation for such highly-virtualized performance-metric oriented services. 

9. Summary and Conclusion
Agile network-enabled C2 requires a distributed-computing infrastructure that is tolerant to D-DIL 
communication/networking conditions. This is especially the case for time-sensitive mission-tasks 
operating within a variety of environments. Thus, there is a critical need for more explicitly modeling 
and understanding the different types of dynamically changing sources of degradation that, in turn, can 
cause different types of D-DIL conditions that impact mission success. The overall focus of this paper 
has been to further survey the applicable technologies, models, and resources, while addressing the 
practical challenges of implementing a MBSE/SOSE based framework that focuses on the need for 
improved adaptive self-healing (i.e. autonomic) link-autonomy and model-level I&I capabilities. 

As highlighted within the previous sections, much progress has been made within a range of domains 
and areas of specialization (i.e. domains of discourse), wherein each separately addresses various 
aspects of the associated ID/NCW ITI S&T needs.

Section two provided background information that helped to provide a working introduction to the need
and associated payoff for developing the type of capabilities descussed herein. This background 
information included discussion of previous work with multi-tier goal-oriented workflow management 
is covered within this context of ISR mission-support. Within section two, complementary connectivity
and link management efforts are also discussed in some detail. For supporting D-DIL conditions within 
challenging environments, various aspects of inter-related data-synchronization services (e.g. C2SS) 
and directional LOS ad-hoc networking (e.g. connectivity management, link management) efforts were 
also surveyed and reviewed.



Section three covered examples of standardized architectures and frameworks within applicable 
application and technology domains. For application-domain related architectures, a FMV example 
highlighted the incorporation of ESB reference architectures for coordinating and orchestrating FMV 
dataflow between producer-consumer endpoints. Within this context of ESB architectures, examples of 
adaptive ESB architecture frameworks were introduced and discussed.

With this initial introduction to adaptive enterprise computing components (e.g. adaptive ESB 
frameworks), self-optimizing enterprise architecture frameworks such as SDNs and SDEs were also 
discussed to further emphasize the emerging trend towards highly-virtualized service-oriented cloud-
computing infrastructures. The continuous-optimization and continuous-assurance (i.e. enterprise 
services) capabilities of emerging SDN/SDE architecture frameworks were also covered to highlight 
the emerging trend towards intrinsically adaptive, self-healing, and resilient/robust enterprise 
infrastructures. Finally, within section three, autonomic-computing models and associated frameworks, 
such as Rainbow, were introduced and discussed within this context of adaptive enterprise-computing 
infrastructure.

Section four covered metrics, indicators, and capability assessment models, within applicable 
technology domains. Examples from wireless networking and quality of service (QoS) focused best-
practices and standards are covered within this section. 

Section five covered emerging technologies and architectures for self-adaptive and self-optimizing 
systems. Applicable streaming-video and wireless networking examples are highlighted and discussed. 
An example of a self-optimizing wireless-networking architecture that focuses on the multi-objective 
optimization of inter-related objectives (e.g. coverage, quality of service, throughput, latency/delay, 
energy efficiency, cost) was noted as particularly applicable.

Section six reviewed applicable examples of risk management, reliability, and safety-engineering. 
Within this section, a number of standardized processes were highlighted, with a particular emphasis on
the opportunity to re-purpose and tailor/augment such standards for development/certification of 
adaptive LOS data-links that demonstrate link-autonomy.

Section seven provided a high-level review of example change and adaptation models that focus on 
particular features of interest for developing link-autonomy: (i) design-pattern oriented approaches for 
developing adaptation strategies and tactics; (ii) latency-awareness oriented methods and techniques 
that address timing, coordination, and proactive adaptation needs.

Section eight further discussed the various aspects of technology domains and respective examples that 
were reviewed and surveyed within the respective sections. The need for adoption and tailoring of the 
surveyed models, architectural frameworks, standards, and best practices, was also discussed. 

While incrementally addressing such challenges, the goal is to more effectively address the need to 
establish S&T roadmaps that incorporate possibly more disruptive and transformational technology 
development increments. In principle, the desired MBSE/SOSE approach should anticipate both a near-
term, as well as, longer-term evolution towards more fully virtualized self-adaptive distributed-
computing infrastructures. Furthermore, such infrastructures need to better represent and incorporate 
the elements of conceptual models and architectural components of resilient systems, autonomic 
frameworks, software defined environments, and cognitive networking technologies. 



10. Future Work and The Way-Ahead
This ongoing technology survey has been motivated by the desire to develop a MBSE/SOSE process 
that addresses conceptual I&I needs for EA/SOA/Cloud and related reference models, patterns, best 
practices, standards, and available resources. In particular, recently open-sourced resources are 
recognized as examples of inter-related, as well as inter-dependent, code bases that can be potentially 
co-evolved and tailored to address data-transport, data-mediation, and data-synchronization needs. 

The role and importance of self-adaptive time-sensitive data-transport, data-mediation, and data-
synchronization services, relative to information-exchange and interaction with unmanned systems is 
area of future work. For tactical ISR, the impact of D-DIL conditions on machine-to-machine, 
machine-to-human, and human-to-human interactions (and collaboration) are of particular interest. 
Working with robotics oriented projects and respective subject matter experts, such S&T challenges 
and associated capability gaps can be further addressed.

Acknowledgements
The ONR visiting faculty and NREIP/SEAP student internship program has provided a basis of 
academic outreach that has also facilitated this ongoing multi-disciplinary research effort. Peer-review 
and suggestions from collaborators, colleagues, and other stakeholders, have helped to significantly 
improve early drafts through ongoing active dialog and collaboration. The authors want to also 
acknowledge support from the SPAWAR Systems Center Pacific (SSC Pacific) Naval Innovative 
Science and Engineering (NISE) program. Finally, the authors most particularly thank the program 
sponsors and respective project managers who have provided continued support.  We are especially 
thankful for the opportunity to develop S&T results into net-enabled operations-support services that 
address high-priority Warfighter needs and capability gaps. The authors also want to thank the 
reviewers of the original draft paper and their thoughtful comments and suggestions that helped to 
further improve the final draft.

Technical References
[1] Heald, K., "Whole of Government Information Sharing & Safeguarding Priorities," Information 
Sharing Environment (ISE) Presentation, Enterprise Architecture Conference, 2011 
(http://goveaconference.com/Events/2011/Sessions/Tuesday/Session-2.5.aspx)
[2] Kwak, K. J., et al., "Airborne network evaluation: challenges and high fidelity emulation solution", 
Comms Magazine, 2014 (http://www.i-a-i.com/public/rfnest/docs/airborne_network_evaluation.pdf)
[3] Durham, J., and A. Daswani, "Enterprise Lexicon Services (ELS): Pilot Tools and Web-Services for 
Acquisition and Mission Support", DoD Enterprise Architecture Conference, 13 May 2010 (afei-
www.kzoinnovations.com/afei/ppt/durham.pdf) 
[4] Durham, J., "Enterprise Lexicon Services (ELS)", The 13th Business Rules & Decision Forum, 
November 2009 (http://www.businessrulesforum.com/abstracts.php?id=301) 
[5] Durham, J., L. McLauchlan, and R. Yuster. "Enabling a common and consistent enterprise-wide 
terminology: An initial assessment of available tools", Web Intelligence and Intelligent Agent 
Technology Conference, 2008. (http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4740506) 
[6] McGirr, S. C., R. J. Wroblewski, and E. L. Dorman, "Active Wiki Knowledge Repository", DTIC, 
2012 (http://www.dtic.mil/dtic/tr/fulltext/u2/a584803.pdf)



[7] Perkins, R., F. Dejesus, J. Durham, R. Hastings, and J. McDonnell, "C2 Data Synchronization in 
Disconnected, Intermittent, and Low-bandwidth (DIL) Environments", ICCRTS, 2013 
(http://www.dodccrp.org/events/18th_iccrts_2013/post_conference/papers/097.pdf; 
http://www.dodccrp.org/events/18th_iccrts_2013/post_conference/presentations/097.pdf)
[8] Durham, J., R. Zeller-Townson, L. McLauchlan, M. Mehrubeoglu, R. Cardenas, F. Dejesus, J. 
McDonnell, "Network-Centric Operations Support: Lessons Learned, Status, and Way-Ahead" (Paper), 
19th ICCRTS, 2014 (http://dodccrp.org/events/19th_iccrts_2014/track_chair/papers/055.pdf)
[9] Durham, J., and Zeller-Townson, R., "ISR Communication Services: Description of Connectivity 
Management", working slides, 2014
[10] Blais, C., "Application of coalition battle management language (C-BML) and C-BML services to 
live, virtual, and constructive (LVC) simulation environments", Winter Simulation Conference, 2011 
(http://calhoun.nps.edu/public/bitstream/handle/10945/37270/blais_a558504.pdf) 
[11] Gupton, K., et al. "Management of C4I and M&S Data Standards with Modular OWL Ontologies."
2011 (http://calhoun.nps.edu/public/bitstream/handle/10945/30791/11S-SIW-061.pdf). 
[12] Bautista, J., S. Metzmaker, T. Rhodes, "Navy Full Motion Video", UCSD Capstone Project, 2013 
(http://jacobsschool.ucsd.edu/mas/aese/team_project/SSC-SAIC/NFMV_Final_Report_Outline.pdf; 
http://jacobsschool.ucsd.edu/mas/aese/team_project/SSC-SAIC/NFMV_Final_Presentation.pdf)
[13] Buyya, Rajkumar, et al., "Software-Defined Cloud Computing: Architectural Elements and Open 
Challenges", ICACCI, 2014 (http://arxiv.org/pdf/1408.6891)
[14] Li, C., et al. "Software defined environments: An introduction." IBM Journal of Research and 
Development, 2014 (http://rboutaba.cs.uwaterloo.ca/Courses/CS856-F14/Papers/06798712.pdf)
[15] Quintero, D., et al., "IBM Software Defined Environment (SDE)", Draft, 12 Jan 2015 
(http://www.redbooks.ibm.com/redpieces/abstracts/sg248238.html?Open)
[16] OME Committee, "Software-defined networking: The new norm for networks", ONF, 2012 
(https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf)
[17] Mininet, acc'd April 2015 (http://mininet.org/overview/)
[18] Smith, P., et al., "Management patterns: SDN-enabled network resilience management", IEEE 
NOMS, 2014 (https://www.seccrit.eu/upload/PID3058477.pdf) 
[19] Cetinkaya, E. K., "Modelling and Design of Resilient Networks under Challenges", 2013 
(http://kuscholarworks.ku.edu/dspace/bitstream/1808/12985/1/Cetinkaya_ku_0099D_13157_DATA_1.pdf)
[20] Qadir, Qahhar Muhammad, Alexander Kist, and Zhongwei Zhang. "Mechanisms for QoE 
optimisation of Video Traffic: A review paper." Australasian Journal of Information, Communication 
Technology and Applications 1.1 (2015): 1-18 
(http://eprints.usq.edu.au/26943/13/Qadir_Kist_Zhang_PV.pdf)
[21] González, L., and R. Ruggia, "Addressing QoS issues in service based systems through an 
adaptive ESB infrastructure", Proc. 6th Workshop on Middleware for Service Oriented Computing, 
ACM, 2011 (http://svn.wso2.org/repos/wso2/scratch/papers/mediation/ieee/papers/adaptive-esb.pdf)
[22] Morand, Denis, Issac Garcia, and Philippe Lalanda. "Autonomic enterprise service bus." Emerging
Technologies & Factory Automation (ETFA), 2011 IEEE 16th Conference on. IEEE, 2011 
(https://hal.archives-ouvertes.fr/hal-00746017/document)
[23] Morand, Denis, Issac Garcia, and Philippe Lalanda. "Towards autonomic enterprise service bus." 
Workshop on Middleware and Architectures for Autonomic and Sustainable Computing. ACM, 2011 
(http://hal.univ-grenoble-alpes.fr/docs/00/74/86/57/PDF/Morand-Garcia-Lalanda_MAASC2011.pdf)
[24] Cilia, home page (http://wikiadele.imag.fr/index.php/Cilia; http://adele.imag.fr/cilia-an-
autonomic-component-based-mediation-framework/)



[25] Kephart, Jeffrey O., and David M. Chess. "The vision of autonomic computing." Computer 36.1 
(2003): 41-50 (http://www.cs.cmu.edu/~15849g/readings/kephart03.pdf)
[26] Cheng, Shang-Wen, and David Garlan. "Stitch: A language for architecture-based self-adaptation."
Journal of Systems and Software 85.12 (2012): 2860-2875 
(http://repository.cmu.edu/cgi/viewcontent.cgi?article=2002&context=isr)
[27] Verbancsics, Phillip, and Douglas S. Lange. Using Autonomics to Exercise Command and Control 
of Networks in Degraded Environments. Space And Naval Warfare Systems Center Pacific San Diego 
CA, 2013 (http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA587015)
[28] Gerostathopoulos, Ilias, et al. "Meta-Adaptation Strategies for Adaptation in Cyber-Physical 
Systems." Software Architecture. Springer International Publishing, 2015. 45-52 
(http://d3s.mff.cuni.cz/publications/download/D3S-TR-2015-01.pdf)
[29] Carroll, N., M. Helfert, and T. Lynn, "Towards the Development of a Cloud Service Capability 
Assessment Framework", Continued Rise of the Cloud, Springer London, 2014 
(http://www.researchgate.net/profile/Noel_Carroll2/publication/259608593_Towards_the_Developmen
t_of_a_Cloud_Service_Capability_Assessment_Framework/links/53e5550d0cf21cc29fcf81df.pdf)
[30] Malik, Aqsa, et al., "QoS in IEEE 802.11-Based Wireless Networks: A Contemporary Survey", 
arXiv preprint arXiv:1411.2852, 2014 (http://arxiv.org/pdf/1411.2852)
[31] Iqbal, Muhammad, et al. "Wireless Sensor Network Optimization: Multi-Objective Paradigm." 
Sensors 15.7 (2015): 17572-17620. (http://www.mdpi.com/1424-8220/15/7/17572/htm)
[32] Yang, Zhuoqun, et al. "Review on Requirements Modeling and Analysis for Self-Adaptive 
Systems: A Ten-Year Perspective." arXiv:1704.00421, 2017 (https://arxiv.org/pdf/1704.00421)
[33] Andersson, Jesper, et al. "Modeling dimensions of self-adaptive software systems." Software 
engineering for self-adaptive systems. Springer Berlin Heidelberg, 2009. 27-47 
(http://www.academia.edu/download/30810809/ebooksclub.org__Software_Engineering_for_Self_Adaptive_Sy
stems__Lecture_Notes_in_Computer_Science___Programming_and_Software_Engineering.pdf#page=36)
[34] Software Engineering for Self-Adaptive Systems: Assurances, Dagstuhl Seminar 13511, 2014 
(https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=13511; 
http://boemund.dagstuhl.de/mat/index.en.phtml?13511).
[35] Cunha, Carlos Augusto da Silva. Self-healing Techniques for Video-streaming Applications. Diss. 
2016 (https://estudogeral.sib.uc.pt/jspui/bitstream/10316/29628/3/Self-healing%20Techniques%20for
%20Video-streaming%20Applications.pdf)
[36] Klaue, Jirka, Berthold Rathke, and Adam Wolisz. "Evalvid–A framework for video transmission 
and quality evaluation." International Conference on Modelling Techniques and Tools for Computer 
Performance Evaluation. Springer Berlin Heidelberg, 2003 (http://www.tkn.tu-
berlin.de/fileadmin/fg112/Hard_Software_Components/Software/evalvid.pdf)
[37] Febrero, Felipe, Coral Calero, and M. Ángeles Moraga. "Software reliability modeling based on 
ISO/IEC SQuaRE." Information and Software Technology 70 (2016): 18-29 
(http://shop.tarjomeplus.com/Uploads/site-1/DownloadDoc/903.pdf)
[38] Stoicescu, Miruna, Jean-Charles Fabre, and Matthieu Roy. "Architecting Resilient Computing 
Systems: A Component-Based Approach for Adaptive Fault Tolerance." Journal of Systems 
Architecture, 2017 (https://hal.archives-ouvertes.fr/hal-01472877/document)
[39] Trapp, Mario. Assuring Functional Safety in Open Systems of Systems. Diss. Habilitationsschrift, 
Kaiserslautern, Technische Universität Kaiserslautern, 2016 (https://kluedo.ub.uni-
kl.de/files/4422/_Assuring+Functional+Safety+in+Open+Systems+of+Systems.pdf)
[40] Joint Software Systems Safety Engineering Handbook, Naval Ord. Safety & Security Activity, Ver.

http://www.academia.edu/download/30810809/ebooksclub.org__Software_Engineering_for_Self_Adaptive_Systems__Lecture_Notes_in_Computer_Science___Programming_and_Software_Engineering.pdf#page=36
http://www.academia.edu/download/30810809/ebooksclub.org__Software_Engineering_for_Self_Adaptive_Systems__Lecture_Notes_in_Computer_Science___Programming_and_Software_Engineering.pdf#page=36
https://hal.archives-ouvertes.fr/hal-01472877/document
https://estudogeral.sib.uc.pt/jspui/bitstream/10316/29628/3/Self-healing%20Techniques%20for%20Video-streaming%20Applications.pdf
https://estudogeral.sib.uc.pt/jspui/bitstream/10316/29628/3/Self-healing%20Techniques%20for%20Video-streaming%20Applications.pdf
https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=13511


1.0, 2010 (http://www.acq.osd.mil/se/docs/Joint-SW-Systems-Safety-Engineering-Handbook.pdf)
[41] MIL-STD-882E, 2012 (http://www.dtic.mil/ndia/2012system/track914863.pdf; 
http://www.system-safety.org/Documents/MIL-STD-882E.pdf)
[42] Berzins, Valdis. Combining risk analysis and slicing for test reduction in open architecture. No. 
NPS-AM-14-C11P07R03-038, NPS, 2014 (http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA624722)
[43] Avizienis, Algirdas, et al. "Basic concepts and taxonomy of dependable and secure computing." 
IEEE transactions on dependable and secure computing 1.1 (2004): 11-33 
(http://drum.lib.umd.edu/bitstream/handle/1903/6459/TR_2004-47.pdf?sequence=1)
[44] Berzins, Valdis, et al. Use of Automated Testing to Facilitate Affordable Design of Military 
Systems. No. SYM-AM-15-097. Naval Postgraduate School Monterey Ca, 2015 
(http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA623091)
[45] Bonne, Susan M., and Jason K. Rupert. Use of Unified Modeling Language (UML) in Model-
Based Development (MBD) For Safety-Critical Applications. No. RDECOM-TR-RDMR-BA-14-01. 
Army Aviation And Missile Research Development And Eng Ctr Redstone Arsenal Al Software 
Engineering Directorate, 2014 (http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA621409)
[46] Favarò, Francesca M., and Joseph H. Saleh. "Toward risk assessment 2.0: Safety supervisory 
control and model-based hazard monitoring for risk-informed safety interventions." Reliability 
Engineering & System Safety 152 (2016): 316-330 
(https://www.researchgate.net/profile/Joseph_Saleh/publication/301567375_Toward_risk_assessment_
20_Safety_supervisory_control_and_model-based_hazard_monitoring_for_risk-
informed_safety_interventions/links/571aa23908ae7f552a4734e6.pdf)
[47] Johnson, Kip Edward. Systems-Theoretic Safety Analyses Extended for Coordination. Diss. 
Wright State University, 2017 (http://sunnyday.mit.edu/johnson-dissertation.pdf)
[48] Šljivo, Irfan, et al. "A method to generate reusable safety case argument-fragments from 
compositional safety analysis." Journal of Systems and Software, 2016 
(http://www.es.mdh.se/pdf_publications/4435.pdf)
[49] Kriaa, Siwar. Joint safety and security modeling for risk assessment in cyber physical systems. 
Diss. Université Paris-Saclay, 2016 (https://tel.archives-ouvertes.fr/tel-
01318118/file/77299_KRIAA_2016_archivage.pdf)
[50] Hissam, Scott A., Sagar Chaki, and Gabriel A. Moreno. "High assurance for distributed cyber 
physical systems." Proceedings of the 2015 European Conference on Software Architecture Workshops.
ACM, 2015 (http://www.contrib.andrew.cmu.edu/~schaki/publications/ASDS-2015.pdf)
[51] Sljivo, Irfan, and Barbara Gallina. "Building multiple-viewpoint assurance cases using 
assumption/guarantee contracts." Proccedings of the 10th European Conference on Software 
Architecture Workshops. ACM, 2016 (http://www.es.mdh.se/pdf_publications/4509.pdf)
[52] Calinescu, Radu, et al. "Engineering Trustworthy Self-Adaptive Software with Dynamic 
Assurance Cases." arXiv preprint arXiv:1703.06350, 2017 (https://arxiv.org/pdf/1703.06350)
[53] Pahl, Claus, P. Jamshidi, and D. Weyns. "Cloud architecture continuity: Change models and 
change rules for sustainable cloud software architectures." J. of Software: Evolution & Process (2016)
[54] Ramirez, A. J., and B. HC Cheng. "Design patterns for developing dynamically adaptive systems."
Proc. of ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems. ACM, 
2010 (https://pdfs.semanticscholar.org/fd3a/831104b0bdc7c860b0ebede01fd4e6679bce.pdf)
[55] Moreno, Gabriel A., et al. "Comparing model-based predictive approaches to self-adaptation: 
CobRA and PLA." Proceedings of the 12th International Symposium on Software Engineering for 
Adaptive and Self-Managing Systems. IEEE Press, 2017 

http://www.contrib.andrew.cmu.edu/~schaki/publications/ASDS-2015.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA621409
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA623091
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA624722
http://www.system-safety.org/Documents/MIL-STD-882E.pdf
http://www.acq.osd.mil/se/docs/Joint-SW-Systems-Safety-Engineering-Handbook.pdf


(http://acme.able.cs.cmu.edu/pubs/uploads/pdf/PLAvsCobRA.pdf)
[56] Angelopoulos, Konstantinos, et al. "Model predictive control for software systems with CobRA." 
Proceedings of the 11th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems. ACM, 2016 (http://www.inf.ufes.br/~vitorsouza/wp-content/papercite-
data/pdf/angelopoulos-et-al-seams16.pdf)
[57] Moreno, Gabriel A., et al. "Efficient decision-making under uncertainty for proactive self-
adaptation." Autonomic Computing (ICAC), 2016 IEEE International Conference on. IEEE, 2016 
(http://acme.able.cs.cmu.edu/pubs/uploads/pdf/moreno-plasdp.pdf)
[58] Cámara, Javier, et al. "Analyzing latency-aware self-adaptation using stochastic games and 
simulations." ACM Transactions on Autonomous and Adaptive Systems (TAAS) 10.4 (2016): 23 
(http://acme.able.cs.cmu.edu/pubs/show.php?type=both&ord=year)

Glossary of Topics and Technical Concepts

1 Information Sharing Environment (ISE; http://en.wikipedia.org/wiki/Information_Sharing_Environment)
ISE home page (http://www.ise.gov/) 

2 Information Dominance Corps (IDC; http://en.wikipedia.org/wiki/Information_Dominance_Corps)
Network-centric warfare (NCW; http://en.wikipedia.org/wiki/Network-centric_warfare)
NCOW (Network-Centric Operations and Warfare; http://en.wikipedia.org/wiki/NCOW)

3 Functional requirement (https://en.wikipedia.org/wiki/Functional_requirement)
Non-functional requirement (https://en.wikipedia.org/wiki/Non-functional_requirement)
Architecturally Significant Requirements (https://en.wikipedia.org/wiki/Architecturally_Significant_Requirements)
List of system quality attributes (https://en.wikipedia.org/wiki/List_of_system_quality_attributes)

4 Distributed operations (http://en.wikipedia.org/wiki/Distributed_operations)
Maneuver warfare (http://en.wikipedia.org/wiki/Maneuver_warfare)

5 Network-enabled capability (NEC; https://en.wikipedia.org/wiki/Network-enabled_capability)
Network-centric organization (https://en.wikipedia.org/wiki/Network-centric_organization)

6 Information and communications technology (ICT; 
https://en.wikipedia.org/wiki/Information_and_communications_technology)
Unified communications (https://en.wikipedia.org/wiki/Unified_communications)
Decision support system (https://en.wikipedia.org/wiki/Decision_support_system)
Augmented cognition (https://en.wikipedia.org/wiki/Augmented_cognition)

7 Cloud computing (https://en.wikipedia.org/wiki/Cloud_computing)
Distributed computing (https://en.wikipedia.org/wiki/Distributed_computing)
Computer network (https://en.wikipedia.org/wiki/Computer_network)
Cyberspace (https://en.wikipedia.org/wiki/Cyberspace)

8 Continual improvement process (https://en.wikipedia.org/wiki/Continual_improvement_process)
Converged infrastructure (https://en.wikipedia.org/wiki/Converged_infrastructure)
Shared services (https://en.wikipedia.org/wiki/Shared_services)

9 Model-driven engineering (MDE; http://en.wikipedia.org/wiki/Model-driven_engineering)
Systems engineering (SE; https://en.wikipedia.org/wiki/Systems_engineering)
Model-based systems engineering (MBSE; https://en.wikipedia.org/wiki/Model-based_systems_engineering)
System of systems engineering (SOSE; http://en.wikipedia.org/wiki/System_of_systems_engineering)

10 Value chain (https://en.wikipedia.org/wiki/Value_chain)
Performance engineering (https://en.wikipedia.org/wiki/Performance_engineering)
Requirement (https://en.wikipedia.org/wiki/Requirement)

11 Application performance engineering (https://en.wikipedia.org/wiki/Application_performance_engineering)
12 Area of responsibility (AOR; https://en.wikipedia.org/wiki/Area_of_responsibility)
       Line-of-sight propagation (https://en.wikipedia.org/wiki/Line-of-sight_propagation)
13 Internet Protocol (https://en.wikipedia.org/wiki/Internet_Protocol)
       Internet protocol suite (https://en.wikipedia.org/wiki/Internet_protocol_suite)

http://acme.able.cs.cmu.edu/pubs/show.php?type=both&ord=year
http://acme.able.cs.cmu.edu/pubs/uploads/pdf/moreno-plasdp.pdf
http://acme.able.cs.cmu.edu/pubs/uploads/pdf/PLAvsCobRA.pdf


14 JCSS Home Page (http://www.disa.mil/Mission-Support/Enterprise-Engineering/JCSS/About-Us)
Government off-the-shelf (GOTS; https://en.wikipedia.org/wiki/Government_off-the-shelf)
Commercial off-the-shelf (COTS; https://en.wikipedia.org/wiki/Commercial_off-the-shelf)

15 Network traffic simulation (https://en.wikipedia.org/wiki/Network_traffic_simulation)
Traffic generation model (https://en.wikipedia.org/wiki/Traffic_generation_model)

16 System integration (https://en.wikipedia.org/wiki/System_integration)
Interoperability (https://en.wikipedia.org/wiki/Interoperability)

17 Use case (https://en.wikipedia.org/wiki/Use_case)
       Performance measurement (https://en.wikipedia.org/wiki/Performance_measurement)
       Performance metric (https://en.wikipedia.org/wiki/Performance_metric)
       Effectiveness (https://en.wikipedia.org/wiki/Effectiveness)
       Organizational effectiveness (https://en.wikipedia.org/wiki/Organizational_effectiveness)
       Organizational performance (https://en.wikipedia.org/wiki/Organizational_performance)
       CCRP (https://en.wikipedia.org/wiki/Command_and_Control_Research_Program)
       CCRP Code of best practice for experimentation (http://dodccrp.org/files/Alberts_Experimentation.pdf)
18 Virtualization (https://en.wikipedia.org/wiki/Virtualization)

Abstraction (computer science) (https://en.wikipedia.org/wiki/Abstraction_%28computer_science%29)
Encapsulation (https://en.wikipedia.org/wiki/Encapsulation_%28object-oriented_programming%29)
Virtual function (https://en.wikipedia.org/wiki/Virtual_function)
Generic function (https://en.wikipedia.org/wiki/Generic_function)
Function overloading (https://en.wikipedia.org/wiki/Function_overloading)
Late binding (https://en.wikipedia.org/wiki/Late_binding)
Duck typing (https://en.wikipedia.org/wiki/Duck_typing)
Multiple dispatch (https://en.wikipedia.org/wiki/Multiple_dispatch)
Dynamic dispatch (https://en.wikipedia.org/wiki/Dynamic_dispatch)

19 Hypervisor (https://en.wikipedia.org/wiki/Hypervisor)
Virtual machine (VM; https://en.wikipedia.org/wiki/Virtual_machine)
Hardware virtualization (https://en.wikipedia.org/wiki/Hardware_virtualization)

20 Network functions virtualization (NFV; https://en.wikipedia.org/wiki/Network_functions_virtualization)
Network virtualization (https://en.wikipedia.org/wiki/Network_virtualization)
I/O virtualization (https://en.wikipedia.org/wiki/I/O_virtualization)

21 Domain (software engineering) (https://en.wikipedia.org/wiki/Domain_%28software_engineering%29)
Domain of discourse (https://en.wikipedia.org/wiki/Domain_of_discourse)

22 Business activity monitoring (BAM; https://en.wikipedia.org/wiki/Business_activity_monitoring)
23 Universal Joint Task List (UJTL; https://en.wikipedia.org/wiki/Universal_Joint_Task_List)

UJTL, updated quarterly (http://www.dtic.mil/doctrine/training/ujtl_tasks.htm; 
http://www.dtic.mil/doctrine/training/ujtl_tasks.pdf)
Universal Joint Task Manual, CJCSM 3500.04F, 1 June 2011 
(http://www.dtic.mil/cjcs_directives/cdata/unlimit/m350004.pdf)
Joint Mission Essential Task List (JMETL) Development Handbook, Sept 2002 
(http://www.dtic.mil/doctrine/training/trainingsystem/JMETLbook.pdf)
DJTEP, Instruction 310-50-4, 4 April 2016, 
(http://www.disa.mil/~/media/Files/DISA/About/Publication/Instruction/di310504.pdf)

24 GQM (https://en.wikipedia.org/wiki/GQM)
Goal-Driven Measurement (http://www.sei.cmu.edu/measurement/tools/goaldriven/index.cfm)

25 GQM+Strategies (https://en.wikipedia.org/wiki/GQM%2BStrategies)
26 Business rule management system (BRMS; https://en.wikipedia.org/wiki/Business_rule_management_system)

Rule-based system (https://en.wikipedia.org/wiki/Rule-based_system)
Drools (https://en.wikipedia.org/wiki/Drools; http://www.drools.org/)
WildFly (https://en.wikipedia.org/wiki/WildFly; http://www.wildfly.org/)

27 Semantics of Business Vocabulary and Business Rules (SBVR; 
https://en.wikipedia.org/wiki/Semantics_of_Business_Vocabulary_and_Business_Rules)
Universal Data Element Framework (UDEF; https://en.wikipedia.org/wiki/Universal_Data_Element_Framework)



Semantic interoperability (https://en.wikipedia.org/wiki/Semantic_interoperability)
28 Software design pattern (https://en.wikipedia.org/wiki/Software_design_pattern)

Dependency injection (https://en.wikipedia.org/wiki/Dependency_injection)
Adapter pattern (https://en.wikipedia.org/wiki/Adapter_pattern)
Aspect (computer programming) (https://en.wikipedia.org/wiki/Aspect_%28computer_programming%29)
Aspect weaver (https://en.wikipedia.org/wiki/Aspect_weaver)

29 Aspect-oriented software development (https://en.wikipedia.org/wiki/Aspect-oriented_software_development)
Aspect-oriented programming (AOP; https://en.wikipedia.org/wiki/Aspect-oriented_programming)

30 Abstract methods (https://en.wikipedia.org/wiki/Method_%28computer_programming%29#Abstract_methods)
Virtual function (https://en.wikipedia.org/wiki/Virtual_function)
Information hiding (https://en.wikipedia.org/wiki/Information_hiding)

31 Network topology (https://en.wikipedia.org/wiki/Network_topology)
Logical topology (https://en.wikipedia.org/wiki/Logical_topology)
Latency (engineering) (https://en.wikipedia.org/wiki/Latency_%28engineering%29)
Responsiveness (https://en.wikipedia.org/wiki/Responsiveness)
Throughput (https://en.wikipedia.org/wiki/Throughput)
Network delay (https://en.wikipedia.org/wiki/Network_delay)
Worst-case execution time (WCET; https://en.wikipedia.org/wiki/Worst-case_execution_time)
Bandwidth (computing) (https://en.wikipedia.org/wiki/Bandwidth_%28computing%29)
Bandwidth management (https://en.wikipedia.org/wiki/Bandwidth_management)
Traffic shaping (https://en.wikipedia.org/wiki/Traffic_shaping)
Active queue management (https://en.wikipedia.org/wiki/Active_queue_management)
Network scheduler (https://en.wikipedia.org/wiki/Network_scheduler)
Scheduling (computing) (https://en.wikipedia.org/wiki/Scheduling_%28computing%29)
Scheduling analysis real-time systems (https://en.wikipedia.org/wiki/Scheduling_analysis_real-time_systems)
Modeling and Analysis of Real Time and Embedded systems (MARTE; 
https://en.wikipedia.org/wiki/Modeling_and_Analysis_of_Real_Time_and_Embedded_systems)
Model checking (https://en.wikipedia.org/wiki/Model_checking)

32 Reliability (computer networking) (https://en.wikipedia.org/wiki/Reliability_%28computer_networking%29)
Dependability (https://en.wikipedia.org/wiki/Dependability)
Availability (https://en.wikipedia.org/wiki/Availability)
Robustness (computer science) (https://en.wikipedia.org/wiki/Robustness_%28computer_science%29)
Fault tolerance (https://en.wikipedia.org/wiki/Fault_tolerance)
Resilience (network) (https://en.wikipedia.org/wiki/Resilience_%28network%29)
Survivability (https://en.wikipedia.org/wiki/Survivability)

33 Multilayered architecture (https://en.wikipedia.org/wiki/Multilayered_architecture)
Multitier architecture (https://en.wikipedia.org/wiki/Multitier_architecture)
Domain (software engineering) (https://en.wikipedia.org/wiki/Domain_%28software_engineering%29)
Domain engineering (https://en.wikipedia.org/wiki/Domain_engineering)

34 Object-oriented design (OOD; https://en.wikipedia.org/wiki/Object-oriented_design)
RM-ODP (https://en.wikipedia.org/wiki/RM-ODP)
ITU-T Rec. X.906 | ISO/IEC 19793 (http://www.lcc.uma.es/~av/download/UML4ODP_IS_V2.pdf)
Information hiding (https://en.wikipedia.org/wiki/Information_hiding)
Application programming interface (API; https://en.wikipedia.org/wiki/Application_programming_interface)

35 Coupling (computer programming) (https://en.wikipedia.org/wiki/Coupling_%28computer_programming%29)
Cohesion (computer science) (https://en.wikipedia.org/wiki/Cohesion_%28computer_science%29)

36 OSI model (https://en.wikipedia.org/wiki/OSI_model)
Abstraction layer (https://en.wikipedia.org/wiki/Abstraction_layer)
Scope (computer science) (https://en.wikipedia.org/wiki/Scope_%28computer_science%29)

37 Middleware (https://en.wikipedia.org/wiki/Middleware)
Middleware (distributed applications) (https://en.wikipedia.org/wiki/Middleware_%28distributed_applications%29)

38 Telecommunications link (https://en.wikipedia.org/wiki/Telecommunications_link)
Data link (https://en.wikipedia.org/wiki/Data_link)



Common Data Link (CDL; https://en.wikipedia.org/wiki/Common_Data_Link)
Tactical Data Link (https://en.wikipedia.org/wiki/Tactical_Data_Link)

39 OSI model (http://en.wikipedia.org/wiki/OSI_model) 
Protocol stack (http://en.wikipedia.org/wiki/Protocol_stack) 

40 Software as a service (SaaS; https://en.wikipedia.org/wiki/Software_as_a_service)
Data as a service (DaaS; https://en.wikipedia.org/wiki/Data_as_a_service)

       Platform as a service (https://en.wikipedia.org/wiki/Platform_as_a_service)
Infrastructure as a Service (IaaS; 
https://en.wikipedia.org/wiki/Cloud_computing#Infrastructure_as_a_service_.28IaaS.29)
Network as a service (NaaS; https://en.wikipedia.org/wiki/Network_as_a_service)

41 As a service (https://en.wikipedia.org/wiki/As_a_service)
42 Sequence diagram (https://en.wikipedia.org/wiki/Sequence_diagram)

System sequence diagram (https://en.wikipedia.org/wiki/System_sequence_diagram)
UML Interaction diagram (https://en.wikipedia.org/wiki/Unified_Modeling_Language#Interaction_diagrams)
Message sequence chart (https://en.wikipedia.org/wiki/Message_sequence_chart)

43 Battle management language (BML; https://en.wikipedia.org/wiki/Battle_management_language)
44 Capacity planning (https://en.wikipedia.org/wiki/Capacity_planning)

Provisioning (https://en.wikipedia.org/wiki/Provisioning)
45 Assertion (software development) (http://en.wikipedia.org/wiki/Assertion_%28software_development%29) 

Design by contract (http://en.wikipedia.org/wiki/Design_by_contract) 
Precondition (http://en.wikipedia.org/wiki/Precondition) 
Postcondition (http://en.wikipedia.org/wiki/Postcondition) 
Class invariant (http://en.wikipedia.org/wiki/Class_invariant) 

46 Hollywood principle (https://en.wikipedia.org/wiki/Hollywood_principle)
Event-driven architecture (https://en.wikipedia.org/wiki/Event-driven_architecture)
Process control network (https://en.wikipedia.org/wiki/Process_control_network)
Distributed control system (DCS; https://en.wikipedia.org/wiki/Distributed_control_system)
Cyber-physical system (CPS; https://en.wikipedia.org/wiki/Cyber-physical_system)

47 Event-driven process chain (https://en.wikipedia.org/wiki/Event-driven_process_chain)
Workflow patterns (https://en.wikipedia.org/wiki/Workflow_patterns)
Workflow Patterns, home page (http://www.workflowpatterns.com/)
Business Process Model and Notation (BPMN; https://en.wikipedia.org/wiki/Business_Process_Model_and_Notation)
XPDL (https://en.wikipedia.org/wiki/XPDL)

48 Autonomic computing (https://en.wikipedia.org/wiki/Autonomic_computing)
Autonomic networking (https://en.wikipedia.org/wiki/Autonomic_networking)
Self-management (computer science) (https://en.wikipedia.org/wiki/Self-management_%28computer_science%29)

49 Concern (computer science) (https://en.wikipedia.org/wiki/Concern_%28computer_science%29)
Separation of concerns (https://en.wikipedia.org/wiki/Separation_of_concerns)
Abstraction principle (computer programming) (https://en.wikipedia.org/wiki/Abstraction_principle_
%28computer_programming%29)
Core concern (https://en.wikipedia.org/wiki/Core_concern)
Single responsibility principle (https://en.wikipedia.org/wiki/Single_responsibility_principle)

50   OODA loop (https://en.wikipedia.org/wiki/OODA_loop)
       PDCA (https://en.wikipedia.org/wiki/PDCA)
51 Service Measurement Index (SMI; https://en.wikipedia.org/wiki/Service_Measurement_Index)
52 Quality of service (QoS; https://en.wikipedia.org/wiki/Quality_of_service)

Mobile QoS (https://en.wikipedia.org/wiki/Mobile_QoS)
53  Software quality (https://en.wikipedia.org/wiki/Software_quality)
      Quality assurance (https://en.wikipedia.org/wiki/Quality_assurance)
      Software quality assurance (https://en.wikipedia.org/wiki/Software_quality_assurance)
      Software quality management (https://en.wikipedia.org/wiki/Software_quality_management)


