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Abstract 

In contested environments, where communications with the centralized Air Operation Center 

(AOC) are denied or degraded, the forward-located Distributed Control Nodes (DCNs) will need 

to assume the AOC’s planning and control functions. USAF is investigating the DCN construct, 

since forward deployed DCNs are much less vulnerable to communications denial as they can 

take advantage of shorter-range, directional communications means to coordinate with each 

other, while the long-haul communications links to the AOC present a large, soft, high-value 

target to a capable adversary.  The DCN construct naturally extends to coalition operations 

where coalition partners provide or staff forward control nodes, and where coalition forces would 

ideally be controlled in an integrated manner by DCNs.  CONOPS featuring unified coalition 

operational control would enable more effective and agile employment of forces and more 

optimal sharing of resources. However, to achieve these benefits with only a small fraction of the 

AOC’s manpower, expertise, and situational awareness, each DCN needs to contribute to the 

planning and replanning, controlling, and assessing of a comprehensive set of missions. We 

present an initial experiment with a decision support capability that assists DCNs’ staff in 

allocating and sharing responsibilities for the C2 tasks (mission planning, controlling, and 

assessing) across a set of parallel missions. Our experiment demonstrates that an auction-based, 

many-to-many resource allocation technique effectively allocates and schedules C2 tasks to 

DCNs. Under reasonable assumptions about DCN staffing, our experiment supports the viability 

of the DCN construct to sustain the tempo of air operations in accordance with Commander’s 

Intent.  

1 Introduction:  

Today, the Coalition Air Operations Center (AOC) provides centralized command and control of 

all coalition air missions. This approach has proven highly successful, but as the focus of air 

operations shifts from conflicts where coalition capabilities are unchallenged towards anti-

access/area denial (A2/AD) scenarios, reliance on centralized control is viewed as a 

vulnerability. With the rise of communications jamming and anti-satellite capabilities of 

competitors, the centralized control and decentralized execution construct, which depends on 

rapid flow of information from the battlespace to the AOC and of control from the AOC to the 

battlespace, is being questioned. Therefore, mitigations and alternatives are being sought, among 

them the distributed control node (DCN) construct, as one realization of the new vision of 

centralized command, distributed control, and decentralized execution1. 
 

Changing from a centralized to a distributed C2 organization raises issues of delegating control 

authority, maintaining unity of effort, and employing the specialized skill mix of staff at small 

DCNs in the most effective manner towards the common Commander’s Intent. A key issue will 

be to ensure that the DCNs take on the appropriate portion of the distributed C2 process for a 

                                                 
1Hostage III, Gilmary Michael; Broadwell Jr., Larry R., “Resilient Command and Control”, JFQ: Joint Force 

Quarterly; 2014 3rd Quarter, Issue 74, p38.  
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subset of missions, which includes mission planning, control of mission execution, and 

assessment of mission effectiveness.  

 

Individual DCNs will have fewer C2 resources, including fewer qualified people, lesser scope 

C2 systems and data, and shorter range communications. Some of the DCNs may not be able to 

operate continuously. A Control and Reporting Center (CRC), for example, will occasionally be 

offline while the CRC moves. Thus, allocation of C2 tasks to DCNs requires an optimal many-

to-many allocation solution that rapidly adapts allocations to changing mission tasks, e.g., 

planning and controlling pop-up target missions or re-strike missions and reallocating C2 tasks 

due to DCN overload or unavailability. Counteracting this desire for operational agility are the 

need to prioritize C2 tasks associated with high-priority missions and to minimize allocation 

changes, which may be disruptive to staffs, as much as possible.  
 

Our project, in contrast to earlier ones, does not develop an automated, distributed mission 

planning technique, but a capability to recommend optimal allocation of C2 tasks to human 

planners supported by automation at a number of DCNs.  

 

In this paper, we present an initial experiment with a decision support capability that assists staff 

at DCNs in allocating and sharing responsibilities for the C2 tasks (mission planning, 

controlling, and assessing) across a set of concurrent, evolving missions. Our experiment 

demonstrates that an auction-based, many-to-many resource allocation technique effectively 

allocates and schedules C2 tasks to DCNs. Under reasonable assumptions about DCN staffing, 

our experiment supports the viability of the DCN construct to sustain the tempo of air operations 

in accordance with Commander’s Intent. 

2 Operational Vision and Requirements 
Distributing the C2 functions normally handled by the centralized Coalition AOC to a set of 

forward deployed Distributed Control Nodes (DCNs) promises to increase resilience of C2 

processes in the face of Anti-Access/Area Denial (A2/AD). USAF is investigating the DCN 

construct, since forward deployed DCNs are much less vulnerable to communications denial, 

because they can take advantage of shorter-range, directional communications means to 

coordinate with each other, while the long-haul communications links to the AOC present a 

large, soft, high-value target to a capable adversary. Wing Operations Centers (WOC), a Carrier 

Strike Group (CSG), a Control and Reporting Center (CRC), or an Airborne Warning And 

Control System (AWACS E-3A aircraft) are envisioned to serve as DCNs. The construct 

naturally extends to coalition operations where coalition partners provide or staff forward control 

nodes, and where DCNs provide integrated control of coalition forces.   

 

Figure 1 shows a notional arrangement of DCNs in the pacific theater. Communications between 

DCNs is relatively short-range, but will still require the use of relays, and is, thus, not guaranteed 

to be continuously available. We derive the following requirements for the technical approach of 

a C2 task allocation scheduler from this operational vision: 

- Fine-grained representation of capabilities required to perform a C2 task. For example, 

the task of planning a Time-Sensitive Target (TST) strike mission, requires expertise in 

operational planning, weapon selection, weather analysis, and airspace control among 

others; systems for air surveillance and air tracking; and corresponding communications 
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links. These capabilities need not reside in a single DCN but can be shared across DCNs, 

as long as communications between DCNs are available. 

- Fine-grained representation of DCN proficiencies: not all DCNs are equally well 

qualified to perform a C2 task. Thus, an explicit model of DCN proficiency in the 

capabilities required by a task need to be modeled explicitly. 

- A representation for constraints on task and capability allocations to DCNs, including 

o Temporal and spatial constraints, e.g., a DCN can only control missions if it has 

radar coverage and communications with the executing aircraft. 

o Co-allocation constraints. Some capabilities have to reside in the same DCNs, i.e., 

cannot be distributed, including any capability that collect or generate information 

and the capability to share this information. 

- Graceful handling of allocation changes: changes to C2 task allocations are sometimes 

necessary, e.g., when a CRC moves, and sometimes desirable, when a high-priority task 

needs to be allocated to DCNs operating near capacity. The approach needs to maintain a 

near-optimal allocation that matches proficiencies to task needs and honors C2 task 

priorities, but without causing excessive ripple effects of re-allocations. 

- Resilience to message loss between DCNs and temporary DCN unavailability. 

3 Computational Model 
We based the implementation of our C2 task allocation scheduler on our CLUS-STAR resource 

allocation algorithm (Greene & Hofmann, 2006) (Guo et al., 2016).  

 

In CLUS-STAR (Figure 2), we 

formulate the problem as dynamic, 

optimal resource allocation of 

capabilities required by tasks to a set 

of agents with varying proficiencies 

for one or more of the required 

capabilities. Each agent represents a 

resource that possesses multiple 

capabilities. N tasks arrive 

dynamically over time and are located 

in a given geographical region. Upon 

arrival of a task, agents bid to perform 

the task. An auction algorithm assigns 

the task to one or several bidding 

agents, specifically, selects capabilities 

required for the task from among the 

capabilities bid by the bidding agents. 

A penalty is incurred if a task remains 

unassigned or is later dropped before it 

is executed. The completion of a task 

incurs a cost and also earns a reward for the agent that is specific to the agent. The goal of the 

optimization problem is to maximize net revenue (reward minus cost) over time for all tasks, 

regardless of which agents executes the tasks. In contrast to a competitive auction, agents do not 

maximize personal reward, but contribute to the team award. Since agents do not compete with 

 
Figure 1. A notional set of DCNs and their 

communications links. Reachback links are 

considered at risk and are not shown. 
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each other, a simple bidding technique is appropriate, where agents simply bid actual 

cost/reward, without regard to competing bids.  

 

The single auctioneer agent may appear to present a weakness, but we typically host the CLUS-

STAR algorithm on a multi-agent platform, such as our Extensible Mobile Agent Architecture 

(EMAA)2 agent framework, the Java Agent Development Framework (JADE), or an equivalent 

framework. These platforms provide mechanisms for hot spares and fail-over. They support 

formation of sub-groups of agents that perform localized auctions when the communications 

network splits into multiple sub-nets (Sheu et al., 2010). 

 

CLUS-STAR has a unique combination of characteristics that make it specifically relevant to the 

C2 task allocation scheduling problem:   

(1) It handles tasks that require cooperation by multiple capabilities hosted at multiple 

DCNs, supporting many-to-many assignments when spatio-temporal constraints and 

communications availability allow.  

(2) CLUS-STAR will break commitments in favor of higher-priority pop-up tasks, but only 

when the overall benefit outweighs the cost of the change and the loss of reward from the 

earlier assignment. This limits changes to a few worthwhile cases and increases 

scalability due to reduced churn.  

(3) CLUS-STAR has low and very localized communications requirements and relatively low 

computational complexity due to its single-stage negotiation. It implements winner 

determination with a polynomial time, constrained-clustering algorithm. 

(4) Supported by bidding proxies, our CLUS-STAR peer-to-peer solution is highly resilient to 

communications network degradation. A proxy may bid on behalf of the agent it represents 

when that agent is unreachable but it is expected to regain communications before the task 

is scheduled to be executed. If communications remain lost, the auction for the task is 

reopened. 

                                                 
2 http://www.atl.external.lmco.com/programs/EMAA/ 

 

Figure 2: One or more DCNs serve as auctioneers, evaluate bids from peer DCNs, and optimize 

C2 task allocations across DCNs. Bidding DCNs bid for all the tasks they are able to perform 

given their local resources. 
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For the application described in this paper, we extended our CLUS-STAR algorithm to allocate 

portions of resources to a task. Apportioned resources model the ability of people to self-manage 

their attention among multiple tasks, the ability of systems to execute multiple functions, and the 

ability of communications links to transmit on multiple channels. Another extension for this 

application implemented on the current CLUS-STAR version supports reassignment of partially 

completed tasks, as may be required when a CRC moves.  
 

An attractive feature for coalition operations is that, by virtue of our auction technique, DCNs do 

not need to share their full state information with a centralized optimization algorithm hosted by 

a coalition partner. DCNs need only respond to a new request for bids by offering selected 

capabilities they want to make available.  

 

3.1 Comparison to other Work 
Karlsson et al. (2007) summarize the arguments for applying a market-based approach to 

resource allocation. Here, we paraphrase three we found important:  

- Market-based approaches represent a convenient abstraction that cover a wide variety of 

resource optimization problems 

- Market-based approaches provide a natural decomposition of the computational model 

- Market-based approaches are allow for dynamic addition and deletion of agents 

 

In the class of market-based approaches, CLUS-STAR’s distributed auction approach for 

resource assignment is related to the stochastic clustering approach work by Zhang et al. (2012) 

but uses greedy moves for faster convergence. Thus, CLUS-STAR convergence can be expected 

to be faster, as demonstrated by solving 200-agent problems in seconds on a standard PC, but 

SCA explores a larger solution space. Also, they do not describe how the technique extends to 

heterogeneous tasks and agents.  

 

Like work by Lumezanu et al. (2008), CLUS-STAR can anticipate resource congestion and 

adapt allocations accordingly with the added ability to deal with probabilistic and worst case 

future demand and asset failure without prior knowledge of future tasks. Our predictive approach 

deals with probabilistic and worst case future demand and asset failure without prior knowledge 

of future tasks.  

 

Moghaddam et al. (2013) present cohesion of capabilities/services as an additional concern to the 

combinatorial auction model to reflect higher reliability of multiple services provided by a single 

agent versus a set of individual services provided by multiple agents. Our recent enhancements 

model this situation with soft constraints.  

 

Work by Mauadi et al. (2011) on multi-agent resource allocation using combinatorial auctions, is 

similar to CLUS-STAR, in that it formulates a multiple-unit knapsack problem and uses a similar 

task and resource model – time constraints, cost (including distance, time required) etc., but 

considers neither dynamic re-allocation nor demand anticipation. 

 

Amador, et al., (2014) present a multi-agent task allocation algorithm with spatial and temporal 

constraints similar to CLUS-STAR. Constraints are used to ensure that all of the agents that 
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cooperate on a task arrive at the task location at the same time, however, not during the auction 

process but afterwards by each agent to reschedule their assigned tasks to honor the temporal 

constraints. The initial allocation ignores spatio-temporal constraints and schedules each agent’s 

tasks by re-ordering tasks, e.g., moving its next scheduled task before the shared task if the agent 

were to arrive too early to a shared task. The algorithm allows interrupting execution of low-

priority tasks. It applies only to homogenous agents. 

 

Compared to consensus protocols, the primary concern of the CLUS-STAR auction is 

optimization. Tolerance of communications faults (dropped messages) is handled via proxies. It 

does not require iterations because it uses a single announce-bid-award auction round, and is, 

thus, fast and efficient. The primary concern of consensus algorithms is agreement among a 

number of agents (reaching the same conclusion) even in the face of faults of a minority of 

agents. The consensus approach is useful in fault-tolerant distributed computing applications. 

Consensus works correctly despite a number of failed nodes, even malicious nodes. On the other 

hand, optimality of the solution has to be ensured by additional means external to the basic 

consensus protocol. Since it does not use an auctioneer to run the optimization step, optimization 

requires multiple iterations over proposed allocation solutions, typically using a gradient 

function.  

 

Fault tolerance, a strength of consensus techniques, is assumed to be provided by the underlying 

agent framework. CLUS-STAR does not question the bid from any individual agent. Also, all 

agents trust that the auctioneer is honest. Our choice of a single-round auction technique as 

realized in CLUS-STAR is motivated by the expected application, where communications is 

expensive and uncertain, and where cyber security is handled elsewhere (e.g., a fake asset 

claiming it will perform a task). We trade off some fault tolerance against malicious agents for 

the benefit of rapid optimization with minimal communications needs. This is also useful for 

rapid re-allocation in the face of changes (pop-up tasks and agent failures). Regarding the quality 

of the assignments, our analysis has shown that CLUS-STAR tracks the theoretical performance 

bounds very well. 

4 Experiment 
We performed an initial experiment with our C2 task allocation scheduler to validate that it will 

produce effective suggestions to assist DCNs’ staff in allocating and sharing responsibilities for 

the mission planning, controlling, and assessing tasks across a set of parallel missions. 

 

Our CLUS-STAR auction algorithm operates on an abstraction of tasks and resources that we 

configure for any specific application. We developed a domain model for a reasonably complete 

set of C2 tasks and a number of notional DCNs. The model specifies the tasks, the capabilities 

that a task requires, the assets (DCNs in this case) and the capabilities that they provide. CLUS-

STAR then negotiates and updates allocations that make optimal use of all available capabilities 

across the DCNs. Allocating the capabilities required by a tasks across multiple DCNs will, in 

general, allow more tasks to be fully allocated than if tasks were constrained to be completely 

handled by a single DCN. CLUS-STAR provides hard and soft constraints to ensure that 

interdependent capabilities, such as creating and disseminating a mission plan are allocated to the 

same DCN. 
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4.1 Domain Formulation 
We contracted PatchPlus to support development of a notional set of DCN capabilities and air 

missions, which the team turned into a configuration file for the CLUS-STAR algorithm.  

 

Table 1 lists the subset of C2 tasks modeled. These tasks are representative of typical C2 

activities required in air operations planning. We modeled two types of C2 tasks that impose 

different requirements on the C2 task allocation solution. Planning, controlling, and assessing 

Strike, Close Air Support (CAS), and Defensive Counter Air (DCA) missions can typically be 

allocated and scheduled in advance, while planning, controlling, and assessing Time-Sensitive 

Target (TST) prosecution often takes precedence over routine C2 tasks and has to be 

dynamically inserted into the workflow of the DCN staff. 

 

Table 1: C2 Tasks included in the model 

Plan TST Plan Strike Plan CAS Plan DCA 

Control TST Control Strike Control CAS Control DCA 

Asses TST Assess Strike Assess CAS Assess DCA 

 

Table 2 lists the three types of capabilities included in our model, the people (skills and 

authority), communications links, and tools or documents required in the performance of the C2 

task. 

 

Table 2: Notional but representative capabilities included in the model 

People Communications Tools/Docs 

Command Element VOIP VOIP 

Ops Planner JWICS Chat 

ISR Planner SIPR TBMCS 

Spectrum Planner Link-16 AOI Coverage (Radar/COP/etc.) 

Airspace Control UpChannel – AOC JTIDS 

PED GEOINT Lateral- other C2 Nodes ROE 

PED SIGINT DownChannel – Unit TST Matrix 

Intel AC-1 ATO 

CSAR Tactical Data Links DCIDE 

Air Surveillance/ Tracking SATCOM TAW-like capability 

Weapons Officer Radios Joint Fires capability (JADOCS) 

Targeteer  Unit level Intel 

Weather  No Strike List 

 

We configured each of the DCNs in the scenario with a subset of capabilities, which would force 

the SPICE allocation solution to creatively combine capabilities from multiple DCNs. Table 3 

shows the People capabilities of a notional Wing Operations Center (WOC). Our simplified 

model only specifies a nominal proficiency or “1.0”. Communications and Tools/Docs 

capabilities are specified by a binary code: available or unavailable. Other DCN types (CRC, 

AWACS, etc.) are staffed and equipped differently and, thus, have different capabilities (not 

shown). 
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Table 3: People capabilities available at a notional WOC 

Capability-People # Proficiency 

Approving authority 2 1.0 

Ops Planner 2 1.0 

ISR Planner 0 1.0 

Spectrum Planner 0 1.0 

Airspace Control 0 1.0 

PED GEOINT 0 1.0 

PED SIGINT 0 1.0 

Intel (Ground and air threats) 2 1.0 

CSAR 0 1.0 

Air Surveillance/Tracking 0 1.0 

Weapons Officer 0 1.0 

Targeteer 1 1.0 

Weather 1 1.0 

…   

 

For each C2 task in the scenario, we specify the capabilities it requires. The configuration in 

Table 4 illustrates the specification of apportioned resources (“% of Person”).  

 

Table 4: Partial list of capabilities required by C2 Task “Plan TST” 

Capability Required? (Y/N) % of Person 

Approving authority Yes 5 

Ops Planner Yes 25 

ISR Planner Yes 30 

Spectrum Planner No   

Airspace Control Yes 10 

PED GEOINT Yes 15 

PED SIGINT Yes 15 

Intel (Ground and air threats) Yes 20 

CSAR Yes 5 

Air Surveillance (feeds from radars) Yes 20 

Air Tracking (overall air picture/COP) Yes 5 

Weapons Officer No   

Targeteer Yes 30 

Weather Yes 5 

…   
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4.2 Experimental Scenario 
For our initial experiment and demonstration we configured a set of notional C2 tasks. The list 

below shows the type, timing, duration, and priority of each of the 42 C2 tasks. We configured 

five DCNs with varying capabilities, a WOC, a CRC, a generic DCN, a DCGS Reachback node, 

and a Target Reachback node.  

 

This initial configuration does not yet demonstrate all the features of the CLUS-STAR allocation 

technique. For example, the C2 nodes have enough capacity to perform all the tasks. With a 

higher task load, CLUS-STAR would favor high priority tasks over low priority ones. 

 
1. Plan strike mission DAN – required by 1500 20 Oct 2020, typical C2 task duration 1 hour, priority 3 

2. Control strike mission DAN – required by 1700 20 Oct 2020, typical C2 task duration 4 hours, priority 2 

3. Assess strike mission DAN – required by 2100 20 Oct 2020, typical C2 task duration 4 hours, priority 2 

4. Plan strike mission DBF – required by 1200 20 Oct 2020, typical C2 task duration 1 hour, priority 3 

5. Control strike mission DBF – required by 1400 20 Oct 2020, typical C2 task duration 4 hours, priority 2 

6. Assess strike mission DBF – required by 1800 20 Oct 2020, typical C2 task duration 4 hours, priority 2 

7. Plan strike mission DDF – required by 1300 20 Oct 2020, typical C2 task duration 1 hour, priority 3 

8. Control strike mission DDF – required by 1500 20 Oct 2020, typical C2 task duration 4 hours, priority 2 

9. Assess strike mission DDF – required by 1900 20 Oct 2020, typical C2 task duration 4 hours, priority 2 

10. Plan strike mission DFN – required by 1700 20 Oct 2020, typical C2 task duration 1 hour, priority 3 

11. Control strike mission DFN – required by 1900 20 Oct 2020, typical C2 task duration 4 hours, priority 2 

12. Assess strike mission DFN – required by 2300 20 Oct 2020, typical C2 task duration 4 hours, priority 2 

13. Plan strike mission DGN – required by 1900 20 Oct 2020, typical C2 task duration 1 hour, priority 3 

14. Control strike mission DGN – required by 2100 20 Oct 2020, typical C2 task duration 4 hours, priority 2 

15. Assess strike mission DGN – required by 0100 21 Oct 2020, typical C2 task duration 4 hours, priority 2 

16. Plan strike mission DJF – required by 1700 20 Oct 2020, typical C2 task duration 1 hour, priority 3 

17. Control strike mission DJF – required by 1930 20 Oct 2020, typical C2 task duration 4 hours, priority 2 

18. Assess strike mission DJF – required by 2100 20 Oct 2020, typical C2 task duration 4 hours, priority 2 

19. Plan strike mission DCF – required by 0300 20 Oct 2020, typical C2 task duration 1 hour, priority 3 

20. Control strike mission DCF – required by 0500 20 Oct 2020, typical C2 task duration 4 hours, priority 2 

21. Assess strike mission DCF – required by 0900 20 Oct 2020, typical C2 task duration 4 hours, priority 2 

22. Plan strike mission DEF – required by 0400 20 Oct 2020, typical C2 task duration 1 hour, priority 3 

23. Control strike mission DEF – required by 0600 20 Oct 2020, typical C2 task duration 4 hours, priority 2 

24. Assess strike mission DEF – required by 1000 20 Oct 2020, typical C2 task duration 4 hours, priority 2 

25. Plan strike mission DHN – required by 0300 20 Oct 2020, typical C2 task duration 1 hour, priority 3 

26. Control strike mission DHN – required by 0500 20 Oct 2020, typical C2 task duration 4 hours, priority 2 

27. Assess strike mission DHN – required by 0900 20 Oct 2020, typical C2 task duration 4 hours, priority 2 

28. Plan strike mission DIF – required by 0930 20 Oct 2020, typical C2 task duration 1 hour, priority 3 

29. Control strike mission DIF – required by 1130 20 Oct 2020, typical C2 task duration 4 hours, priority 2 

30. Assess strike mission DIF – required by 1530 20 Oct 2020, typical C2 task duration 4 hours, priority 2 

31. Plan CAS mission 1 – required by 0200 20 Oct 2020, typical C2 task duration 2 hours, priority 3 

32. Control CAS mission 1  – required by 0400 20 Oct 2020, typical C2 task duration 12 hours, priority 2 

33. Assess CAS mission 1 – required by 1700 20 Oct 2020, typical C2 task duration 2 hours, priority 2 

34. Plan CAS mission 2 – required by 1400 20 Oct 2020, typical C2 task duration 2 hours, priority 3 

35. Control CAS mission 2  – required by 1600 20 Oct 2020, typical C2 task duration 12 hours, priority 2 

36. Assess CAS mission 2 – required by 0500 21 Oct 2020, typical C2 task duration 2 hours, priority 2 

37. Plan DCA mission 1 – required by 0200 20 Oct 2020, typical C2 task duration 2 hours, priority 3 

38. Control DCA mission 1  – required by 0400 20 Oct 2020, typical C2 task duration 12 hours, priority 2 

39. Assess DCA mission 1 – required by 1700 20 Oct 2020, typical C2 task duration 2 hours, priority 2 

40. Plan DCA mission 2 – required by 1400 20 Oct 2020, typical C2 task duration 2 hours, priority 3 

41. Control DCA mission 2  – required by 1600 20 Oct 2020, typical C2 task duration 12 hours, priority 2 

42. Assess DCA mission 2 – required by 0500 21 Oct 2020, typical C2 task duration 2 hours, priority 2 
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5 Results 
We developed a user interface prototype to show the suggested task allocation. We chose the 

form of a schedule, which is a familiar paradigm for displaying tasks with temporal extent, but 

we did not yet have a chance to elicit feedback from the envisioned user community. Separate 

panels display the allocations to each of the DCNs, listing allocations of capabilities required by 

the tasks to the resources, including people (Figures 3 and 4). One panel provides a complete 

view of all the task allocations. The interface lets users view the overall allocations or focus on 

the allocation and schedule for a single task or for a single capability. We also developed a 

demonstration control panel to step through the demonstration sequence. 

 

Figures 3 and 4 show the demonstration control window and one of the DCN schedule windows. 

Clicking “Open Schedules” in the demo control window (Figure 3) without selecting a C2 node 

from the list opens all of the C2 Node schedule windows.  

 

  
Figure 3. The demonstration control window, where the allocated task schedules of five sample 

C2 nodes can be viewed. The function of the “Disable Agent” button has not yet been 

implemented. It would indicate that a DCN is temporarily unavailable. The SPICE system would 

re-allocate partially completed tasks and tasks that have yet to be started to alternate DCNs. 

 



11 

 

 
Figure 4. Capability utilization schedule for the CRC node for Day 2 of our two-day scenario. 

The “Tasks” panel lists all the tasks to which the CRC contributes capabilities. When the user 

selects one of the tasks, then only allocations for this task are shown. The “Capabilities” panel 

lists all the capabilities resident in the CRC which are allocated to any of the tasks. These 

capabilities are also the column headers of the schedule chart. The bottom left panel shows 

details for a capability allocation selected by clicking on one of the boxes on the schedule chart 

(capability “Air Space Control” allocated to task “Control strike emission DDF”). The schedule 

chart shows to which task each capability is allocated at a specific time. Notice that most 

capabilities can serve multiple tasks, since the tasks only require a portion of the capability. This 

models capabilities that are not specific to just one task, such as airspace control, and the multi-

tasking capabilities of human planners, and the sharing of bandwidth on communications 

channels. 

 

Figure 5 shows an example of how CLUS-STAR spreads the capabilities required for a single 

task across multiple C2 nodes, taking advantage of the specialized capabilities available at each 

DCN. On the other hand, capability requirements for a portion of a capability, e.g., 30% of an 

ISR Planner, are not split further, but allocated to one of the resources at a single DCN. Since the 

reward and cost functions are identical for all DCNs and the resource proficiencies are all set to 

1.0, the allocation is left up to chance more so than it would with a more realistic scenario 

configuration.  
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Figure 5. Fourteen capabilities required by the “Control Strike Mission DDF” task are spread 

across four DCNs. We have selected to display the allocations for only the “Control strike 

mission DDF” task. For example, the CRC (bottom right) provides AOI (radar) coverage, as it is 

the node closest to the mission, and also performs airspace control; Guam (bottom left) provides 

the ISR planner and weather analysis; the WOC (top left) connects to JTIDS; and DCGS 

Reachback (top right) provides Intel for ground and air threats and ROE evaluation, among other 

capabilities.  

 

6 Limitations and Future Work 
Our own analysis showed that we needed to enhance the specifications of the tasks to include 

interdependency constraints between multiple capabilities required for the task. Some closely 

coupled capabilities need to reside in the same C2 node, while others may be distributed across 

two or more nodes. We have added a capability co-location constraint to our CLUS-STAR 

algorithm since the time of the experiment.  

 

Our demonstration harness did not yet support triggering the re-allocation of a partially 

completed task, so that we were not able to experiment with this new algorithm feature. 

 

Future work will focus on two major aspects: (1) validation that the capability will aid the 

envisioned user community in managing distributed C2 tasks across a changing set of missions, 

and (2) completion of technical capability. 

 

We plan to validate end user value proposition by gathering SME feedback on the current design 

using the following steps: 
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- Increase the realism of the scenario 

- Expose the concept to a set of operational users 

- Specify a richer set of user interaction beyond inspection of automated results 

- Prototype an interactive user interface 

- Perform experiments with temporary unavailability of DCNs 

o Activate the functionality of the “Disable Agent” button on the demo control 

panel 

o Validate the ability to re-allocate a partially completed task 

 

Another extension to CLUS-STAR is suggested by this application: to add a resource 

requirement constraint that is conditional on a prior allocation decision. For example, a higher 

level of communications capability between two DCNs will be required if a task is allocated 

across both these DCNs. 

7 Summary 
We have successfully completed a first experiment that demonstrates the promise of using an 

automated tool to suggest efficient and effective allocation of C2 tasks across a number of 

distributed control nodes with varying staff, systems, and connectivity. We demonstrated the 

efficacy of an auction-based optimization capability (CLUS-STAR) to optimize the allocations. 

We suggest future work to extend, validate, and mature this capability to make it relevant to 

coalition air campaign planning in future A2/AD scenarios.  
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